
Solving and Visualizing Nonlinear Set Inversion

Problems∗

Elif Garajová
Faculty of Mathematics and Physics, Charles Univer-
sity in Prague, Czech Republic

elif.garajova@matfyz.cz

Martin Mečiar
Faculty of Mathematics and Physics, Charles Univer-
sity in Prague, Czech Republic

martinmeciar@centrum.sk

Abstract

The notion of constraint satisfaction allows us to formalize various
problems involving a set of variables with given properties. This paper
presents a solver for nonlinear set inversion problems, a specific class of
continuous constraint satisfaction problems, in which the properties are
described by a system of nonlinear inequalities over interval domains. The
solver is based on the branch-and-bound algorithm SIVIA combined with
interval contractors and is accompanied by a visualization tool, which can
provide a two-dimensional graphical representation of the solution sets.
It also implements several methods for obtaining a finer approximation of
a solution set using inner and outer approximations by interval boxes.

Keywords: nonlinear constraints, interval analysis, visualization

AMS subject classifications: 65-04, 65G40

1 Introduction

Many problems from various branches of natural and technical sciences can be mod-
eled using the notion of constraint satisfaction. Formally, we can define a constraint
satisfaction problem (CSP) as the triplet (X,D,C), where

• X = {x1, . . . , xn} is a set of variables,

• D = {D1, . . . , Dn} is a set of the respective domains,

• C = {c1, . . . , cm} is a set of constraints to be satisfied (relations over X).

∗Submitted: November 20, 2015; Accepted: January 25, 2016.

104

elif.garajova@matfyz.cz
martinmeciar@centrum.sk


Reliable Computing 22, 2016 105

In this paper, we are interested in a special case of CSPs: we only allow bounded
closed real intervals as the domains and both linear and nonlinear inequalities as the
constraints. This case, the so-called set inversion problem, can be approached with
interval methods by finding an inner and outer approximation of the solution set using
a set inversion algorithm. The resulting approximations are then described by sets of
interval boxes.

However, sometimes it might be difficult to extract useful information about the so-
lution set only from lists of boxes generated by an interval solver. It can be convenient
to be able to obtain a graphical representation of the data, which is often easier to an-
alyze. Visualization can serve as a helpful tool in determining the shape and structure
of the solution set or in comparing the quality of the results obtained using differ-
ent algorithms. The aim of our solver is to merge the algorithmic core for solving
nonlinear set inversion problems with a user-friendly visualization tool aiding in the
interpretation of the results.

Inner and outer interval approximations of the solution set, if precise enough, can
provide a good estimate of the real shape of the set. Obtaining an almost-precise
approximation using interval methods may, however, require a long computation time.
With this in mind, we have extended our basic visualization tool to include several
algorithms for approximating the boundary of the solution set, based on the interval
boxes from the guaranteed interval approximations.

The paper is organized as follows: In Section 2 we review the SIVIA algorithm,
which forms the basis of our solver. We also briefly introduce interval contractors
that can enhance the efficiency of the core algorithm. Section 3 is devoted to the
visualization of the results obtained by the solver and the techniques for acquiring an
approximation of the actual shape of the solution set. Then, in Section 4, we discuss
some implementation details regarding the structure of the solver and its components.
Section 5 shows the use of our solver on concrete examples and describes an application
of the solver in the visualization of complex interval arithmetic. Finally, Section 6
summarizes the article and offers some ideas for future work.

2 Nonlinear Constraints and Interval Analysis

2.1 Set Inversion via Interval Analysis

Hereinafter, boldface lowercase letters refer to intervals and interval vectors. The set of
all (closed) real intervals [a, b] with a ≤ b will be denoted by the symbol IR. Similarly,
the symbol IRn will denote the set of all n-dimensional interval vectors.

Consider a set inversion problem in the form

c1(x1, . . . , xn) ≤ 0

...

cm(x1, . . . , xn) ≤ 0

xi ∈ di ∀i ∈ {1, . . . , n}

where the domains satisfy di ∈ IR, and let us by X denote the solution set of this prob-
lem. Using the well-known set inversion algorithm SIVIA [12], we can find an approxi-
mation of X by three unions S,N , E of n-dimensional interval boxes with the properties
S ⊆ X ⊆ S ∪E and X∩N = ∅, which form a partition of the interval box d1×· · ·×dn



106 Garajová and Mečiar, Solving and Visualizing Set Inversion Problems

(also called a paving). The maximal width of the boxes in the set E (and thus the pre-
cision of the approximation) is determined by a parameter ε > 0 as part of the input.

The algorithm SIVIA has a branch-and-bound nature. In the course of the algo-
rithm, we maintain a list of undetermined interval boxes (i.e., the boxes we have not
assigned to S,N or E yet). Initially, the set of undetermined boxes consists of the box
D = d1 × · · · × dn. Then, given an undetermined interval box from the list, we either
include it into one of the resulting sets S or N , or, if the length of at least one side of
the box is greater than or equal to ε, bisect the box into two (smaller) undetermined
boxes and iterate the procedure. If the box is undetermined, but smaller than ε, we
include it into the set E . Let us by [c] : IRn → IR denote the natural interval extension
of a function c : Rn → R obtained by replacing all occurrences of a real variable by its
interval counterpart. The conditions for including an interval box x ∈ IRn into one of
the sets S or N are the following:

• if [c](x) ≤ 0 (equivalently [c](x) ⊆ (−∞, 0]), then include x in S,

• if [c](x) > 0 (equivalently [c](x) ∩ (−∞, 0] = ∅), then include x in N .

Figure 1 shows a two-dimensional visualization of a result obtained by the SIVIA
algorithm with ε = 0.25. The solution set is defined by the constraints

x2
1 + x2

2 ≤ 16,

x2
1 + x2

2 ≥ 9

over the domain [−5, 5] × [−5, 5]. The set S is represented by green interval boxes,
the set E by yellow boxes and the set N by white boxes.

It is also possible to obtain a partial visualization of a higher-dimensional problem
by projecting the results onto a plane defined by two of the variables. This approach
may be desirable, if some of the variables are only artificial or if we need to capture
the relation between a pair of variables. The solver includes a simple algorithm, which
creates a two-dimensional paving based on the projection of the interval boxes in
the original paving.

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

Figure 1: Visualization of a solution set obtained by the SIVIA algorithm



Reliable Computing 22, 2016 107

2.2 Contractors

The SIVIA algorithm can be improved by adding more sophisticated methods to re-
move points of the search space, which are not contained in the solution set of the given
set inversion problem. Examples of such methods are various contractor functions that
can reduce an interval box by removing some of its points inconsistent with the con-
straints. This may lower the number of bisections needed during the course of the
algorithm and may also lead to a better approximation of the solution set.

A function fX(x) : IRn → IRn is called a contractor for a set X ⊆ Rn if it satisfies
the following properties:

∀x ∈ IRn : fX(x) ⊆ x, (contractance)

∀x ∈ IRn : x ∩ X ⊆ fX(x). (corectness)

An example of a contractor, which is also implemented in our solver, is the forward-
backward contractor [4, 11]. This contractor works as follows: First, the expression
tree of a single constraint from the given set inversion problem is constructed. Then,
the tree is traversed and the subexpression at each node is evaluated using interval
arithmetic. Given an expression tree of a constraint, the forward phase uses the do-
mains of the variables to obtain values for the intermediate nodes of the tree. These
values can then be refined in the backward phase by isolating the nodes and using
inverse operations, yielding reduced domains of the variables. Other supported con-
tractors include a box-consistency based contractor [5] and a contractor exploiting the
monotonicity of functions [3].

3 Visualization and Approximation

We will have a look at one of the ways how to make the approximation of a two-
dimensional paving for the purposes of a visualization. We will solve approximation
of the paving (S,N , E) by partitioning the sets S,N , E into new sets S ′,N ′, E ′.

Before we start, we will introduce a few definitions. Hereinafter, we will by `(X)
denote the number of elements of a list X. The symbols S,N , E , when used as input
for the algorithms, will also stand for lists of interval boxes forming the corresponding
unions.

We say that a box b1 is a neighbor to a box b2, if the intersection of b1 and b2 is
a line segment or a vertex. The term box path will denote a list of two-dimensional
boxes (b1, . . . , bk), where ∀i ∈ {1, . . . , k − 1} it holds that bi is a neighbor to bi+1 and
∀i, j ∈ {2, . . . , k − 1} : bi 6= bj for i 6= j.

In the remaining definitions, elements of the set {s, n, e, d} are used to denote
the following:

• the symbols s, n, e correspond to the sets S,N , E , respectively,

• the symbol d corresponds to the area out of the domain space.

A border is a triplet (V,L,R), where V is a list of two-dimensional points, L is a list
of elements from the set {s, n, e, d}, R is a list of elements from {s, n, e, d} and it holds
that `(V ) = `(L)− 1 = `(R)− 1. Li and Ri hold indicators, which sets are to the left
and the right side of the segment ViVi+1.

A region is a triplet (V, I,K), where V is a list of two-dimensional polygons, I is
a list of values {0, 1} such that `(I) = `(V ), K is a value from the set {s, n, e, d}. The



108 Garajová and Mečiar, Solving and Visualizing Set Inversion Problems

symbol I is an indicator, if the region lies inside, or outside of each polygon. The
symbol K is an indicator, which set the region belongs to.

We will divide the complex task of the approximation into three simpler tasks:

• obtaining the borders,

• approximating the borders,

• partitioning the sets,

which will be explained in sections 3.1, 3.2 and 3.3.

3.1 Obtaining the Borders

In the first phase of the approximation process, we create a helper description of the
sets S,N , E : the borders. The construction of borders is formalized in Algorithm 1.
A short description of all included functions follows.

Algorithm 1 Borders construction

1: function CreateBorders(S, N , E)
2: D ← CreateEdgeBoxes(S, N , E)
3: G ← GetSelectedBoxes(S, N , E , D)
4: Graph ← CreateGraph(G)
5: POIs ← GetPOIs(Graph, S, N , D)
6: BoxPaths ← CreateBoxPaths(Graph, POIs)
7: Sequences ← SampleSequences(BoxPaths)
8: Borders ← CreateBorders(Sequences, S, N , E , D)
9: return Borders

10: end function

Function CreateEdgeBoxes creates 4 one-dimensional boxes, which cover the
edges of the domain.

Function GetSelectedBoxes selects one-dimensional boxes from the paving or
creates new one-dimensional boxes in the domain of the paving. Control points for our
approximation will be sampled from these boxes. There are several different methods
that can be used for obtaining different results. For example, if we only want to get
smoother sets S,N , E , then an output of the function consists of:

• all one-dimensional intersections of boxes in S with boxes in E ,

• all one-dimensional intersections of boxes in N with boxes in E ,

• all one-dimensional intersections of boxes in S with boxes in N ,

• all one-dimensional intersections of boxes in D with boxes in S, N or E .

Function CreateGraph returns a graph, in which every box from G has a cor-
responding vertex. If two boxes from G are neighbors, then there exists an edge
between their corresponding vertices in the graph. No additional vertices or edges
exist in the graph.

Function GetPOIs creates a set of vertices of the Graph that were marked as
points of interest (POI). A vertex is marked as POI, if it satisfies at least one of
the conditions:

• it has more or less than two edges,



Reliable Computing 22, 2016 109

• its corresponding box has an intersection with a box of D,

• its corresponding box has zero volume and it has a one-dimensional intersection
with at least one box from S and at least one box from N .

Function CreateBoxPaths creates a set of box paths BoxPaths such that for
each P ∈ BoxPaths with P = (b1, . . . , b`(P )) and for the corresponding vertices
(v1, . . . , v`(P )) of Graph the following holds:

vi /∈ POIs, ∀i ∈ {2, . . . , `(P )− 1}
v1 ∈ POIs,
v`(P ) ∈ POIs.

Function SampleSequences samples lists of points from box paths. For the box
path P = (b1, . . . , b`(P )) the list of points is V = (p1, . . . , p2`(P )−1), where p2i−1 is
the midpoint of bi and p2i is the intersection of bi with bi+1.

Function CreateBorders returns borders made from Sequences. To each seg-
ment of sequence it adds information about the sets on the sides of the segment. We
can obtain this information for a segment s by constructing a perpendicular line p to s
intersecting s in the middle of the segment and look for the boxes that are intersected
by p to both sides from s.

3.2 Approximating the Borders

Approximation gathered in Algorithm 1 just keeps a track of box paths. In Algorithm 2
describes, how to make a smoother approximation of our set partitioning from the
borders constructed in Algorithm 1. By approximation of the border (V,L,R), we
mean the border (V ′, L,R), where V ′ is an approximation of V .

We can sequentially apply several different approximating or interpolating meth-
ods. The only conditions, which have to be satisfied, are that v′1 = v1, v′`(V ′) = v`(V )

and that the approximated borders cannot intersect themselves. To obtain the best
results, the approximated sequences should not intersect each other, except in their
first or last points.

During the testing, especially good results were obtained by various two-dimensional
subdivision algorithms.

Algorithm 2 Borders approximation

1: function ApproximateBorders(Borders, DemandedApproximations)
2: ApproxBorders ← Borders
3: for ApproxMethod ∈ DemandedApproximations do
4: ApproxBorders ← ApproxMethod(ApproxBorders)
5: end for
6: return ApproxBorders
7: end function

3.3 Partitioning the Sets

In this section, we use Algorithm 3 to part the domain space of the paving into regions
constructed from the approximated borders. The resulting sets S ′, N ′, E ′ then consist
of these constructed regions with corresponding indicators.



110 Garajová and Mečiar, Solving and Visualizing Set Inversion Problems

Algorithm 3 Regions construction

1: function CreateRegions(ApproxBorders)
2: SplitBorders ← SplitOnIntersections(ApproxBorders)
3: Regions ← GetRegions(SplitBorders)
4: return Regions
5: end function

Function SplitOnIntersections finds for each two borders the intersections of all
their segments. Borders having common intersection in a place other than a starting
or an ending point of the sequence are split in the place of their intersection into new
borders.

Function GetRegions creates regions by constructing the polygons and regions
are constructed from these polygons. For construction of polygons we use the method
described in [2], but we are using also counter-clockwise circled polygons. For con-
struction of the region, we always select one clockwise circled polygon Q in function
of bounding polygon, which has corresponding indicator in I equal to 1. We find all
overlapping counter-clockwise circled polygons with Q that are not equivalent to Q
and we include them to the region with corresponding indicator I equal to 0. Infor-
mation about which set does the region belong to is obtained from the information
stored for each segment.

3.4 Visualization of Regions

In this section, we present a method for obtaining a visualization based on the con-
structed regions, summarized in Algorithm 4. For a resulting visualization of two
different approximation techniques applied to a paving generated by the SIVIA algo-
rithm see Figure 2.

Algorithm 4 Regions visualization

1: function CreateVisualization(Regions, XPts, YPts, Domain)
2: Canvas ← CreateCanvas(XPts, YPts)
3: for Region ∈ Regions do
4: DrawPolygons(Canvas, Region, XPts, YPts, Domain)
5: end for
6: for X ∈ {1, . . . ,XPts} do
7: for Y ∈ {1, . . . ,YPts} do
8: if IsEmpty(X, Y) then
9: (CX,CY)← GetCoordinates(X, Y, XPts, YPts, Domain)

10: Region← FindRegion(Regions, CX, CY)
11: FloodFill(Canvas, Region, X, Y)
12: end if
13: end for
14: end for
15: return Canvas
16: end function



Reliable Computing 22, 2016 111

Figure 2: Two approximation techniques (middle, right) applied to a paving
generated by SIVIA (left)

There are several auxiliary functions used in the visualization:

• CreateCanvas creates an empty canvas of size XPts × YPts.

• DrawPolygons draws polygons of Region into Canvas with color based on
the indicator K of the Region.

• IsEmpty checks, if a pixel (X, Y) in Canvas is empty.

• GetCoordinates returns real coordinates of the pixel (X, Y) in Domain.

• FloodFill initiates flood-fill algorithm from the pixel (X, Y) in Canvas with
the color chosen according to indicator K of the Region.

Function FindRegion returns the region, which the coordinates (CX, CY) belong
to. Whether the coordinates belong to a region (V, I,K) can be determined by using
the Winding number algorithm [1]. If the returned values of algorithm used on poly-
gons V agree with all corresponding indicators of I, then the coordinates belong to
the region.

4 Implementation Details

The core of our solver is written mainly in MATLAB with the use of MEX (Matlab
EXecutable) files for communication with the parts written in C++. Interval com-
putations are handled by INTLAB [15] and the Boost interval arithmetic library [7].
The solver also includes an implementation of the contractors discussed in Section 2.2.

The visualization tool is written entirely in C++ and contains both the main
function of C++ application and the gateway function for MEX, so it can also be
used as a self-standing application outside of the MATLAB environment. The tool
is accepting input generated by other solvers as well, if their solutions are pavings.
The tool allows visualizing several pavings at once. The CImg Library [16] is used by
the graphical user interface for image processing and interaction with the user.

Further information, as well as the source code of the solver, are available on the
project website [14].



112 Garajová and Mečiar, Solving and Visualizing Set Inversion Problems

5 Examples

5.1 A Nonlinear Problem

This short example illustrates the use of our solver for visualization of the solution of
a nonlinear set inversion problem. Let us consider the following problem:

sin(x) + cos(2x) ≥ y,

(x, y) ∈ [−5, 5]× [−5, 5].

We can input the constraint of a problem using the solver in the MATLAB envi-
ronment as strings, with letters of the English alphabet as the names for the variables:

c1 = ’sin(x) + cos(2*x) >= y’;

or as anonymous functions with declared variables:

c1 = @(x,y)(sin(x) + cos(2*x) >= y);

For more complex constraints, there is also the possibility to create a separate func-
tion, testing whether a given box satisfies the constraint, contains no values consistent
with the constraint or whether it cannot be decided. The domains of the variables are
contained in an interval vector, e.g. D = [infsup(-5,5), infsup(-5,5)];. The fol-
lowing lines show the basic syntax for a call of the SIVIA algorithm with a precision
of 0.25 (minimal length of a side of the tested box, which can be further divided):

[S, N, E] = cspsivia({c1}, D, 0.25);

The user can further specify a division strategy (by default the longest side is chosen)
or select a contractor to be used (the default setting uses no contractors).

Figure 3: Visualization and approximation of the problem

The resulting sets of interval boxes describing the solution can now be passed as
arguments to the visualization tool by the command

Runner(1, 600, 600, ’matlab’, S, N, E);

The arguments of this command are: the number of output pavings to be visualized,
the x-size and y-size of the canvas in pixels and blocks starting with the keyword
’matlab’ (for sets stored in the MATLAB environment) or ’file’ (for sets stored in



Reliable Computing 22, 2016 113

a text file). The visualization tool also allows various approximation techniques to be
applied on the result (see Figure 3).

Smaller values of ε result in higher computation times (see Table 1 for details on
the computation time using different ε).

ε (precision) 0.25 0.1 0.01
Number of boxes in S 122 249 1989
Number of boxes in N 119 247 1965
Number of boxes in E 187 368 2914
SIVIA algorithm 5.320 s 11.254 s 97.775 s
Subdivision algorithm 0.190 s 0.428 s 20.421 s
Casteljau’s algorithm 0.273 s 0.961 s 162.250 s

Table 1: Example computation time details

5.2 Complex Intervals

In analogy to the extension of real numbers to complex numbers, it may also be useful
to define complex intervals and arithmetic operations on them. There are three main
non-equivalent definition of complex intervals, which are based on different ways to
express complex numbers – namely the rectangular [6], circular [9] and polar [13, 8]
complex intervals. In this example, we will present a simple visualization of arithmetic
operations on rectangular complex intervals, which are also supported by our solver.

Generalizing the basic definition of complex numbers, rectangular complex inter-
vals are defined by ordered pairs of real intervals (a, b) ∈ IR2 as x = a + bi, where a
represents the real part of the complex interval x (denoted by Rex) and b represents
its imaginary part (denoted by Imx). We will denote the set of all complex intervals
by IC. For two complex intervals x,y ∈ IC, we define their sum or difference as
the rectangular complex interval

x± y = (Rex± Rey) + (Imx± Imy)i.

However, introducing complex interval multiplication (or division) in a similar manner
may result in overestimation, since the set of all products (quotients) of all pairs of
points in x and y is, in general, not a rectangular complex interval. The problem
of describing the exact product {x · y | x ∈ x, y ∈ y}, where · denotes the standard
product defined on the set of complex numbers, can be formulated as a nonlinear set
inversion problem.

First, we can rewrite the exact product as the set

{(Rex · Re y − Imx · Im y) + (Rex · Im y + Imx · Re y)i | x ∈ x, y ∈ y}.

Let us also define the rectangular product of complex intervals x,y as the complex
interval x ·y = (Rex ·Rey− Imx · Imy) + (Rex · Imy + Imx ·Rey)i. The following
set inversion problem can then be used to find the exact product of x and y:

• variables: xr, xi, yr, yi, pr, pi,

• domains: Rex, Imx, Rey, Imy, Rex · y, Imx · y,

• constraints: xryr − xiyi = pr, xryi + xiyr = pi.



114 Garajová and Mečiar, Solving and Visualizing Set Inversion Problems

Our solver implements the class rectcintval, which can be used to work with rect-
angular complex intervals. It also provides the support for basic rectangular arithmetic
operations (operators +,-,*,/), as well as the visualization of the exact complex inter-
val products and quotients (operators .*, ./). The following example shows a simple
use of this class with a graphical representation of the result (see Figure 4):

x = rectcintval(infsup(-1,5), infsup(2,3));

y = rectcintval(infsup(-6,6), infsup(1,1));

z = x .* y;

Figure 4: Visualization of complex multiplication

6 Conclusion

We have presented the algorithmic background of our tool for solving and visualizing
nonlinear set inversion problems using interval methods, as well as some examples
showing the simple use of the solver in the MATLAB environment. The main goal of
the project is to provide the user with a piece of software, which can not only find the
solution to a problem, but also aid in the interpretation of the results by providing
a human-understandable visual representation of the solution set.

The possibilities for future improvements include utilizing the solver to solve sub-
problems in the interactive visualization. Another interesting extension might be the
visualization of three-dimensional problems. The solver together with the visualization
tool will be available after revision as part of the Lime toolbox [10].

Acknowledgements

We would like to thank Milan Hlad́ık, Jaroslav Horáček and Miroslav Rada for their
valuable advice and consultations. We also express our gratitude to the two anonymous
referees for their helpful suggestions.

The authors were supported by the Czech Science Foundation Grant P402/13-
10660S.



Reliable Computing 22, 2016 115

References

[1] David G. Alciatore and Rick Miranda. A winding number and point-in-polygon
algorithm. Glaxo virtual anatomy project research report, Department of Me-
chanical Engineering, Colorado State University, 1995.

[2] Algorithm 101 : Finding all polygons in an undirected graph. http:

//blog.reactoweb.com/2012/04/algorithm-101-finding-all-polygons-

in-an-undirected-graph/. Accessed: 2015-10-25.

[3] Ignacio Araya, Bertrand Neveu, and Gilles Trombettoni. An interval constraint
propagation algorithm exploiting monotonicity. In International workshop IntCP,
pages 65–83, 2009.

[4] Frédéric Benhamou, Frédéric Goualard, Laurent Granvilliers, and Jean-François
Puget. Revising hull and box consistency. In International Conference on Logic
Programming, pages 230–244. MIT press, 1999.

[5] Frédéric Benhamou, David A. McAllester, and Pascal Van Hentenryck.
Clp(intervals) revisited. In Maurice Bruynooghe, editor, ILPS, pages 124–138.
MIT Press, 1994.

[6] Ray E. Boche. Complex interval arithmetic with some applications. Technical
Report LMSC4-22-66-1, Lockheed Missiles and Space Co., Sunnyvale, CA, USA,
1966.

[7] Hervé Brönnimann, Guillaume Melquiond, and Sylvain Pion. The design of the
Boost interval arithmetic library. Theoretical Computer Science, 351(1):111 – 118,
2006.

[8] Yves Candau, Tarek Raissi, Nacim Ramdani, and Laurent Ibos. Complex interval
arithmetic using polar form. Reliable Computing, 12(1):1–20, 2006.

[9] Irene Gargantini and Peter Henrici. Circular arithmetic and the determination
of polynomial zeros. Numerische Mathematik, 18(4):305–320, 1971.

[10] Jaroslav Horáček and Milan Hlad́ık. LIME – Library of Interval MEthods. http:
//kam.mff.cuni.cz/~horacek/projekty/lime/. Accessed: 2015-10-25.

[11] Luc Jaulin, Michel Kieffer, Olivier Didrit, and Eric Walter. Applied Interval
Analysis, with Examples in Parameter and State Estimation, Robust Control and
Robotics. Springer-Verlag, London, 2001.

[12] Luc Jaulin and Eric Walter. Set inversion via interval analysis for nonlinear
bounded-error estimation. Automatica, vol. 29(no. 4):1053–1064, 1993.

[13] Rudi Klatte and Christian P. Ullrich. Complex sector arithmetic. Computing,
24(2-3):139–148, 1980.

[14] Martin Mečiar and Elif Garajová. Interval data visualisation. http://www.ms.

mff.cuni.cz/~meciarm/iviz/.

[15] Siegfried M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor,
Developments in Reliable Computing, pages 77–104. Kluwer Academic Publishers,
Dordrecht, 1999. http://www.ti3.tuhh.de/rump/.

[16] David Tschumperlé. The CImg Library. In IPOL 2012 Meeting on Image Pro-
cessing Libraries, 2012. http://www.cimg.eu/.

http://blog.reactoweb.com/2012/04/algorithm-101-finding-all-polygons-in-an-undirected-graph/
http://blog.reactoweb.com/2012/04/algorithm-101-finding-all-polygons-in-an-undirected-graph/
http://blog.reactoweb.com/2012/04/algorithm-101-finding-all-polygons-in-an-undirected-graph/
http://kam.mff.cuni.cz/~horacek/projekty/lime/
http://kam.mff.cuni.cz/~horacek/projekty/lime/
http://www.ms.mff.cuni.cz/~meciarm/iviz/
http://www.ms.mff.cuni.cz/~meciarm/iviz/
http://www.ti3.tuhh.de/rump/
http://www.cimg.eu/

	Introduction
	Nonlinear Constraints and Interval Analysis
	Set Inversion via Interval Analysis
	Contractors

	Visualization and Approximation
	Obtaining the Borders
	Approximating the Borders
	Partitioning the Sets
	Visualization of Regions

	Implementation Details
	Examples
	A Nonlinear Problem
	Complex Intervals

	Conclusion

