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Abstract

The viability kernel corresponds to the set of all state vectors of a
controlled dynamic system that are viable, i.e., such that there exists an
input such that the system will not enter inside a forbidden zone. In
this paper, we propose a method which computes an inner and an outer
approximation of the viability kernel in a guaranteed way. Our method is
based on interval analysis and uses the notions of V-viability and capture
basin. We illustrate our approach on the car on the hill problem. A
software package has been developed to solve any 2D-problem.
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1 Introduction

Safety verification of controlled systems has been approached with different tools such
as viability theory [2], reachability analysis, or the concept of barrier function (see e.g.,
[5]). Safety is often expressed as a set of constraints in which the system must stay.
For example, safety verification problems may consist of ensuring a safe configuration
during the landing [3] or the take off [21] of an airplane, or collision avoidance [10] with
other aircraft. When we have an input to the system, we may want to find a controller
which guarantees that the system is safe for all conditions. The set of all state vectors
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such that a system can stay (for the right input) within a set of constraints is called
the viability kernel.

The computation of the viability kernel has been addressed by several methods. For
low-dimensional problems and non-linear systems, most methods are based on gridding
the state space [8, 20], but due to the finite precision of the computer, gridding methods
cannot be considered as guaranteed. For high-dimensional systems, the viability kernel
can be approximated using methods based on Lagrangian methods [15] for linear
systems, or invariant sets [22] for polynomial systems. The viability kernel can also be
approached using tools from the reachability analysis. Reachability analysis consists of
computing the set of all state vectors that the dynamic system can reach from a given
initial state. This problem has been considered with Hamilton-Jacobi equations [16],
and was most recently approached with interval analysis [19]. If the target set belongs
to a safe region, the viability kernel can be approximated by computing the set of
state vectors from which the system can reach the target [13]. Now, for our problem
of computing the viability kernel, we cannot assume a priori that such a target set,
included in the viability kernel, is available. Therefore, a subset of the viability kernel
must be first computed in a reliable way.

In this paper, we consider low-dimensional and non-linear dynamic systems, and
we propose to compute a guaranteed approximation of the viability kernel with interval
analysis tools [12]. Instead of manipulating a set of points as gridding methods do,
interval methods consider connected sets of state spaces. Using interval techniques,
computations are reliable and guaranteed, which allows us to compute an inner and
an outer approximation of the viability kernel.

This paper is organized as follows. Section 2 contains the notation and gives
the definition of the viability kernel and the capture basin. In Section 3, we present
the concept of V -viability, which will allow us to find subsets of the viability kernel.
Section 4 provides theoretical results to compute the capture basin and Section 5
gives an algorithm to get an inner and an outer approximation of the viability kernel.
In Section 6, we illustrate our approach with a two-dimensional example. Section 7
concludes this paper.

2 Notation and Definitions

In this paper, an interval is a continuous set, denoted as follows: [x] = [x, x], x ≤
x, with x the lower bound and x the upper bound. A vector of intervals [x] =
([x1], . . . , [xq])

⊺ is commonly called a box. A dynamic system S is defined by the
following differential equation :

{

ẋ(t) = f(x(t), u(t)),

u(t) ∈ U,
(1)

where:

• x(t) ∈ R
n is an evolution of the state variables,

• U is a compact subset of Rm which represents the set of admissible values for
the control,

• u ∈ U = {u : R+ 7→ U} is the control vector,

• f : Rn×U 7→ R
m is the evolution function of S . We assume that f is continuous,

locally Lipschitzian and bounded in R
n × U.
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Let ϕ be the flow map of S , i.e., with the initial condition x0 = x(0) and a control
function u(t), the system S reaches the state ϕ(t, x0, u) at time t.

Let us define the viability kernel and the capture basin of S .

Definition 2.1 Let S be a dynamic system and let K ⊆ R
n be a compact set. The

viability kernel of K under S is the set ViabS(K) of initial states x ∈ K from which at
least one evolution does not leave K for all t ≥ 0. We have

ViabS(K) = {x ∈ K | ∃u ∈ U , ∀t ≥ 0, ϕ(t, x, u) ∈ K}.

We now define the capture set (also called robust invariant set), which is closely related
to the concept of viability kernel.

Definition 2.2 Let T ⊂ K be a target. The capture basin of T viable in K under S
is the set CaptS(K,T) of initial states x ∈ K from which at least one evolution of S in
K reaches the target T in a finite time

CaptS(K,T) = {x0 ∈ K | ∃t ≥ 0, ∃u ∈ U ,

{

ϕ(t, x0, u) ∈ T,

ϕ([0, t], x0, u) ⊆ K.

}

.

where
ϕ([t1, t2], x0, u) = {x ∈ R

n | ∃t ∈ [t1, t2], x = ϕ(t, x0, u)}. (2)

3 V -Viability

Definition 3.1 Consider a dynamic system S and a differentiable function V : Rn 7→
R. S is said to be V -viable if

∀x ∈ R
n such that V (x) = 0, ∃u ∈ U, 〈∇V (x) · f(x, u)〉 < 0.

Figure 1 illustrates a V -viable system. For each point of the curve V (x) = 0
at least one potential evolution of S points strictly inward into the gray set, which
represents V −1(R−). This is the geometrical interpretation of 〈∇V (x) · f(x, u)〉 < 0.

Figure 1: The vector field is displayed for several controls along the level curves of V .

The definition of V -viability implies the resolution of a quantified constraint satis-
faction problem that can be solved with cylindrical decomposition [6] if V is polynomial
or with methods based on interval analysis [11] in the general case.
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Theorem 3.1 Consider K a subset of Rn. If S is V -viable and V −1(R−) is a compact
subset of K, then V −1(R−) ⊆ ViabS(K).

Proof: Consider x ∈ K and the subset L of K defined by

L = {x ∈ K|V (x) ≤ 0} = V −1(R−)

The contingent cone TL(x) to L at x ∈ L, V (x) = 0 can be defined with the gradient
of V . According to [1, pp. 123], TL(x) is defined by

TL(x) = {y ∈ K| V (x) = 0 =⇒ 〈∇V (x), y〉 ≤ 0}

Here we recall the definition of a viability domain [2, pp. 84]:
We shall say that a subset L ⊂ K is a viability domain of K if and only if

∀x ∈ L, f(x,U) ∩ TL(x) 6= ∅

As S is V -viable, we have:

∀x such as V (x) = 0, ∃u ∈ U, 〈V (x), f(x, u)〉 < 0

=⇒ f(x,U) ∩ TL(x) 6= ∅

Therefore, L is a viability domain.
Moreover, according to the Local viability theorem [2, pp. 91], we have:

x0 ∈ L =⇒ ∃u ∈ U such as ∀t ≥ 0, ϕ(x0, t, u) ∈ K.

Thus, by definition, L ⊆ ViabS(K).

Theorem 3.1 can be used to prove that a set is inside the viability kernel of K.
Figure 1 illustrates this by the gray set, which belongs to ViabS(K). To find a viable
subset of the viability kernel, a function V must be chosen so that S has a high
probability to be V -viable. Such a function can be found using Lyapunov theory [4, 23].
Some Lyapunov methods can approximate attraction domains of S [9, 18]. If S is V -
viable and the second condition of Theorem 3.1 is checked, V −1(R−) is proved to be
a subset of ViabS(K).

4 Capture Basin of Viable Sets

In Section 3, a method to compute subsets of the viability kernel from the notion of
V -viability is provided. These subsets represent a first approximation of ViabS(K).
In order to obtain a better approximation, these viable subsets are enlarged with their
capture basins.

The following theorem states that the capture basin of a subset of ViabS(K) is
also a subset of ViabS(K).

Theorem 4.1 Let S be a dynamic system, K be a closed subset of the state space of
S, and T be a subset of K. If T ⊂ ViabS(K), then CaptS(K,T) ⊂ ViabS(K).
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Proof: Consider x0 ∈ CaptS(K,T). From the definition of CaptS(K,T), we have

∃t1 ≥ 0, ∃u1 ∈ U , ϕ(t1, x0, u1) ∈ T and ϕ([0, t1], x0, u1) ⊂ K.

Moreover, if T ⊆ ViabS(K) then ∃u2 ∈ U , ∀t > t1, ϕ(t, ϕ(t1, x0, u1), u2) ∈ K. Define

u(t) =

{

u1(t) if t ∈ [0, t1],

u2(t) if t > t1.
(3)

Then, ∀t > 0, ϕ(t, x0, u) ∈ K. So, according to the definition of ViabS(K), we have
x0 ∈ ViabS(K).

Proposition 4.1 If T ⊂ K, then

(i) ∃t ≥ 0,∃u ∈ U ,

{

ϕ(t, x0, u) ∈ T

ϕ([0, t], x0, u) ⊆ K
=⇒ x0 ∈ CaptS(K,T),

(ii) ∃t ≥ 0,∀u ∈ U, ϕ(t, x0, u) /∈ ViabS(K) =⇒ x0 /∈ ViabS(K),

(iii) x0 /∈ K =⇒ x0 /∈ ViabS(K).

Proof: This proof is trivial since it comes from the definition of ViabS(K).

Proposition 4.1 may be used to prove that a state belongs to CaptS(K,E) or does
not belong to ViabS(K).

Remark 4.1 From Equation (iii) of Proposition 4.1, we can conclude that (Rn \K)∩
ViabS(K) = ∅.

In the following, we consider an initial box [x0] instead of a unique point state.

Proposition 4.2 Let [x0] ⊂ K be an initial set and T ⊂ K

(i) if ∀x ∈ [x0], ∃t ≥ 0, ∃u ∈ U , ϕ(t, x, u) ⊂ T and ϕ([0, t], x, u) ⊆ K,
then [x0] ⊂ CaptS(K,T),

(ii) if ∀x ∈ [x0], ∃t ≥ 0, ∀u ∈ U, ϕ(t, x, u) 6∈ ViabS(K),
then [x0] ∩ViabS(K) = ∅.

Proof: The proof of (i) and (ii) are the same of those of Proposition 4.1 considering
sets of states variable instead of unique point.

Methods using interval arithmetic are able to compute a guaranteed enclosure of
the flow map ϕ from an initial box [x0] of the state space, see [7, 17] for details. Using
these techniques, it is possible to compute

• an over-approximation [ϕ](t, [x0], u) of {ϕ(t, x, u) | x ∈ [x0]},

• an enclosure [ϕ]([0, t], [x0], u) of all evolutions ϕ([0, t], x, u) with all initial states
x ∈ [x0],

• an enclosure [ϕ](t, [x0],U) of all evolutions ϕ(t, x, u) with all initial states x ∈ [x0]
and all the possible control functions u ∈ U .

Such enclosures are generally overestimated. But if the size of the box [x0] is small
enough, this estimation can be accurate.
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5 Algorithm to Compute ViabS(K)

In this section, we suppose that we have found a set E ⊆ ViabS(K) using techniques
of Section 3. We present an algorithm that computes Vinner, a guaranteed inner
approximation of CaptS(K,E), and H, a guaranteed approximation of the complement
of ViabS(K) in K. This algorithm is an extension of the one presented in [14] to
compute the viability kernel. We choose to subdivide the state space into boxes,
so that we can easily use Proposition 4.2. Figure 2a shows the initial problem. Its
representation with a subpaving is displayed in Figure 2b.

(a)

(b)

Figure 2: Subpaving representing the initial inner approximation for ViabS(K)

Vinner is initialized with boxes of the subpaving proved to belong to E, represented
in dark gray in Figure 2b. H is initially empty. We want to check whether boxes
contained in the set S = K \ (H ∪ Vinner) in white on Figure 2b belong to Vinner or
H. The gray space represents the complement of ViabS(K) in R

n and is proved not to
belong to ViabS(K) (see Remark 4.1). Figure 3 illustrates the principle of Algorithm 1.

Algorithm 1 works as follows. A control u is randomly picked in U . The value
t is fixed at the beginning of Algorithm 1. If Equation (i) of Proposition 4.2 holds
(Line 4), [xi] is proved to belong to CaptS(K,E) and we add it to Vinner. This case
is represented by [x1] in Figure 3. The box [x2] represents a case in which nothing
can be proved. We know that ((Rn \ K) ∪ H) ∩ ViabS(K) = ∅. If the condition of
Line 6 is checked, we have [ϕ](t, [xi],U) ∩ ViabS(K) = ∅. Thus, from Equation (ii)
of Proposition 4.2, we know that [xi] does not intersect ViabS(K) and we add it to
H. The box [x3] illustrates this case on Figure 3. Nothing can be proved for [x4]. At
Line 10, S contains boxes that we have not proved whether they belong to H or Vinner.
These boxes are bisected to facilitate the classification with respect to CaptS(K,E) or
H.

At the end of Algorithm 1, we have Vinner ⊆ CaptS(K,E). Moreover, according to
Theorem 4.1, we have CaptS(E,K) ⊆ ViabS(K). Hence Vinner ⊆ ViabS(K). Finally,
Vinner is an inner approximation of ViabS(K).

Furthermore, H ∩ ViabS(K) = ∅, thus we have ViabS(K) ⊆ (K \ H). Then, the
set Vouter = K \ H is an outer approximation of ViabS(K). Due to the reliable and
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Algorithm 1 Computation of an inner and an outer approximation of ViabS(K)

Require: Initial sets S,Vinner and H.
1: while S 6= ∅ do

2: for all [xi] in S do

3: Choose u ∈ U .
4: if [ϕ]([0, t], [xi], u) ⊆ K and [ϕ](t, [xi], u) ⊆ Vinner then

5: Vinner := Vinner ∪ [xi], S := S \ [xi],
6: else if [ϕ](t, [xi],U) ⊆ ((Rn \K) ∪H) then
7: H := H ∪ [xi], S := S \ [xi],
8: end if

9: end for

10: Bisect boxes of S.
11: end while

12: return Vinner and H.

Figure 3: Illustration of the method for characterizing ViabS(K)
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guaranteed computation of [ϕ] with interval arithmetic, the inner and outer approxi-
mations Vinner and Vouter are certified.

Compared to the algorithm of [14], our version contains technical and computa-
tional improvements to accelerate the convergence:

• The enclosure of [ϕ] is computed using the technique of [7], which improves the
quality of the bounds and increases the chance to include a box in Vinner or H.

• The data structure of Vinner and H is carefully implemented. A regular paver,
represented by a binary tree, is used to perform fast intersections and set unions
.

• In Algorithm 1, the subboxes composing S are divided only if it is not possible
to prove that they belong to Vinner or H. In the algorithm presented in [14], S
is entirely dividied into small boxes with the same size, then it tries to prove if
they belong to Vinner or H. Algorithm 1 divides boxes only if needed; this allows
it to include large boxes directly in Vinner or H.

These points aim to break down the exponential complexity of this algorithm.

6 Application to the Car on the Hill Problem

We illustrate our approach with the car on the hill problem. In this application, we
want the car to stay on a landscape represented by the parametric function

g : s 7→
−1.1

1.2
cos(1.2s) + 1.2

1.1
cos(1.1s)

2
,

where s ∈ [0, 12] denotes the longitudinal variable. The function g is plotted on
Figure 4.

Figure 4: Car on the hill problem. We aimed to avoid the car falling off the cliffs at
s = 0 and s = 12.

The acceleration of the car can be controlled within a limited range. We also
consider a friction force that slows down the car. The dynamic system S associated
with our problem is described by

{

ẋ1(t) = x2(t),

ẋ2(t) = −9.81 sin(ġ(x1(t)))− 0.7x2(t) + u(t),

where x1 = s represents the position of the car on the landscape, x2 = ṡ its velocity,
and u ∈ [−2, 2] is the control function. The viability problem is formulated as follows:
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we want to keep x1 between values 0 and 12 with a limit on the velocity of the car
between −6 and 6. Thus, the set of constraints K is defined by

K = {x | x1 ∈ [0, 12], x2 ∈ [−6, 6]}.

We limit the precision on s and ṡ to 0.1.
To compute ViabS(K) we first apply the method of Section 3 to find a subset E of
ViabS(K). To do so, S is linearized around an equilibrium point of S . Then, a
quadratic Lapunov function is computed for the linearized system. A function V is
created from the Lyapunov function so that S is V -viable. This procedure is repeated
for several equilibrium points. Figure 5 illustrates the result obtained.
The elliptic shapes of subsets of ViabS(K) in Figure 5 come from the quadratic ex-
pressions of the Lyapunov functions. Moreover, the centers of these viable subsets
correspond to a position of the car at the tops or bottoms of the hills with a null
velocity, where the car is in an equilibrium state.

The computation took 10 seconds on a 2.5 GHz Intel Core i5-2450M processor
with 6 Gb RAM.

Figure 5: Subsets of ViabS(K) are found with method of Section 3

Next, we apply Algorithm 1 to compute an inner and outer approximation of
ViabS(K). The result is shown in Figure 6. The CPU time is 1h 23min. The dark-
gray set corresponds to Vinner and is the largest set that we could prove to be viable
in a guaranteed way. Nothing could be proved for the boxes of the white set. The
light gray set is proved to be outside the viability kernel. The union of the white set
and the dark-gray set corresponds to Vouter.
Figures 5 and 6 have been obtained with a solver available at
http://www.ensta-bretagne.fr/monnet/Viabibex/ .

7 Conclusion

This paper proposes an interval method to approximate the viability kernel of a non-
linear dynamic system. Our approach merges the concepts of V-viability and reach-
ability analysis. An inner approximation of the viability kernel is computed on an

http://www.ensta-bretagne.fr/monnet/Viabibex/
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Figure 6: Approximations of the viability kernel.

infinite time horizon. Interval analysis tools ensure the reliability and provide a guar-
antee for all the results. The non-linear constraints on the evolution function enable
application of our method to a large variety of problems. Numerical results for the
car on the hill problem demonstrate the feasibility of our approach. Moreover, our
method can be generalized to an n-dimensional problem.
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