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Abstract

How to estimate parameters from observations subject to errors and
uncertainty? Very often, the measurement errors are random quantities
that can be adequately described by the probability theory. When we
know that the measurement errors are normally distributed with zero
mean, then the (asymptotically optimal) Maximum Likelihood Method
leads to the popular least squares estimates. In many situations, however,
we do not know the shape of the error distribution; we only know that the
measurement errors are located on a certain interval. Then the maximum
entropy approach leads to a uniform distribution on this interval, and the
Maximum Likelihood Method results in the so-called minimax estimates.
We analyze specificity and drawbacks of the minimax estimation under
essential interval uncertainty in data and discuss possible ways to solve the
difficulties. Finally, we show that, for the linear functional dependency,
the minimax estimates motivated by the Maximum Likelihood Method
coincide with those produced by the Maximum Compatibility Method
that originate from interval analysis.
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1 Introduction

The paper is devoted to data analysis under uncertainty, when we do not know
exact values of our measurements, observations, etc., but instead we have at
our disposal some alternative information. These can be bounds of possible
errors of the measured quantities, both lower and upper, which is equivalent
to determining interval results of measurements. On the other hand, these can
be probabilistic characteristics of the errors corrupting the measured quantities,
and then we can use well-developed methods of probability theory to process
our data.

Data analysis methods based on probability theory are very elaborate and
popular, they have been applied to processing the results of measurements and
observations for about two centuries. Interval methods came into being in the
middle of the XX century, and they are only now starting to win the favor of
engineers and practitioners. The purpose of our paper is to show that the results
and conclusions drawn by these different approaches are in good agreement with
each other, so that any one of them can be used to justify and substantiate (or
even to verify) the other.

Interval methods in data analysis originated from the pioneering works by
L. V. Kantorovich1 [9] and F. C. Schweppe [24]. For the last decades, they
have been developed deeply and extensively by many researchers throughout
the world.

Broad research areas and a great variety of applications have resulted in
great terminological diversity: doing similar (and even the same) things, peo-
ple speak of “guaranteed parameter estimation”, “set-membership estimation”,
“bounded-error approach”, “interval data fitting”, “interval regression”, etc. To
get an insight into the current state of knowledge in this field, the reader can
consult, e. g., [7, 13] and the literature cited there.

Our paper appears in the special issue of the journal “Reliable Computing”
devoted to Ramon E. Moore and his scientific heritage. The topic of the paper
has a direct relationship to the activity of Ramon Moore who suggested, in [15],
an elegant way to present and describe the solution sets in nonlinear parameter
estimation.

Formulation of the problem. In many situations, we know the general form
of the functional dependency between the quantities x = (x1, . . . , xk) and y, i. e.,
we know that

y = f(x, p), (1)

where p = (p1, . . . , pl) is an l-dimensional parameter vector. Based on actual
values of the variables x and y, we have to find the values of p1, . . . , pl that
correspond to a specific function f from the parametric family (1). This prob-
lem is referred to as “parameter estimation problem”, “data fitting problem”,
“regression problem”, “curve fitting”, etc.

1Leonid Kantorovich was one of the founders, along with George Dantzig, of linear pro-
gramming, as well as a Nobel Prize winner in economic sciences.
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To find the parameter p, we repeatedly measure the corresponding values of
x and y. As a result, for each measurement i = 1, 2, . . . ,m, we get the corre-

sponding values x(i) = (x
(i)
1 , . . . , x

(i)
k ) and y(i). Our task is to determine such

p? = (p?1, . . . , p
?
l ) that the function y = f(x, p?) “best fits” the measurement

data set
x(1), y(1),

x(2), y(2),

· · · , · · · ,
x(m), y(m)

(2)

(see Fig. 1). At this point, we have to explain the sense in which we understand
the “best fitting”.

x

y

Figure 1: In data fitting problem, we have to construct
a line that best fits measurement data.

Ideally, the “best fit” line should go through all the measurement points of
the set (2). This happens when the measurements are so accurate that we can
safely ignore any errors and assume that the measured values of the quantities
x1, x2, . . . , xk, and y are exact. In this case, we get a system of equations

f(x(1), p) = y(1),

f(x(2), p) = y(2),

...
...

...

f(x(m), p) = y(m),

(3)

with l unknowns p1, . . . , pl. Having solved the system, we obtain the desired
values of the parameters that correspond to the data analyzed. In general,
to find l unknowns, it is sufficient to have l different equations. Thus, in the
ideal case of absolutely accurate measurements and providing that f adequately
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describes the actual functional dependency under study, we would be able to
determine the values of all l parameters pi after m = l measurements.

However, measurements are not precise. They can even include so-called
outliers, measurement results that largely deviate from the rest of the data
set, which may be caused by experimental errors, etc. The function f may
not perfectly reflect the functional dependency that exists between x and y in
practice. Usually, f is considered as a “main part” (to within neglected terms) of
the actual function between x and y. In such situations, we cannot expect that
the equalities y(i) = f(x(i), p), i = 1, 2, . . . ,m, are exactly satisfied for some p.
Then the “best fit” line should be a best approximation, in a prescribed sense,
of the data set (2) (this is the situation described in Fig. 1).

In such situations, the equation system (3) cannot be solved exactly, and
we have to find its solution in some generalized sense. The latter is especially
true since we often try to make as much measurements as possible: every mea-
surement provides us with additional information about f . Hence, the equation
system (3) can be over-determined.

We are going to consider a simplified situation with the measurement errors:

the values x
(i)
j of the argument are supposed to be exact, but the actual values

y(i) of the function f , i. e., such that y(i) = f(x(i), p), are, in general, different
from the measured values of f , denoted by ỹ(i). Hence, instead of (2), we have
to process the approximate data

x(1), ỹ(1),

x(2), ỹ(2),

· · · , · · · ,
x(m), ỹ(m),

(4)

which results in the necessity to solve the equation system

f(x(1), p) = ỹ(1),

f(x(2), p) = ỹ(2),

...
...

...

f(x(m), p) = ỹ(m),

(5)

rather than system (3).

2 Probabilistic Approaches

In this section, we discuss how to estimate parameters when our measurements
are not exact, but we have certain probabilistic information about measurement
errors. The material we present below is quite standard, but we survey it
to make our paper self-sufficient, as well as to prepare and motivate further
conclusions.
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Notice that even the fact that probabilistic approaches are applicable to pro-
cessing specific data is not trivial and should be substantiated on its own. In
particular, the so-called statistical stability (see [5]) is one of necessary prereq-
uisites for the methods of probability theory in statistics to be adequate and
efficient.

Typical probabilistic prerequisites. In some cases, we can be sure that the
probability theory is an adequate tool for describing the measurement errors.

Moreover, the probability distributions of the measurement errors ∆y(i) def
=

ỹ(i) − y(i), or at least the shape of the corresponding probability distributions,
are known. Let us consider this kind of situation.

First of all, from the repeated measurements, we often know, with good
accuracy, the mean value of the measurement error. In such situations, we can
correct the measurement results by subtracting this bias (mean value). Hence,
we can suppose that the mean value of the measurement error is equal to 0.

Frequently, when all major measurement disturbances are eliminated, the
remaining errors are formed from many small error sources. Under reasonable
conditions, the probability distribution of the sum of N small independent ran-
dom variables is known to tend to the normal distribution when N increases.
This fact is called the Central Limit Theorem (see, e. g., [22, 33]). Thus, when
the measurement error comes from the joint effect of a large number of small
independent components, we can safely assume that the resulting probability
distribution of the overall measurement error is normal. For a general normal
Gaussian distribution with zero mean, the probability density ρ as a function
of the error ∆y has the form

ρ(∆y) =
1

σ
√

2π
· exp

(
− (∆y)2

2σ2

)
(6)

for an appropriate value σ (called standard deviation).

We remind the reader of the empirical fact that in practice, about 60% of
the measuring instruments have a normally distributed measurement error; see,
e.g., [19, 20].

How to estimate the parameters in the case of normal error distribu-
tion. It is well known that an asymptotically optimal way to determine the
parameters of a distribution from the sample values is the Maximum Likelihood
Method. According to it, we select the values of the unknown parameters so that
the probability of the given sample of values (in the case of discrete probability
distributions) or probability density at the given sample of values (in the case of
continuous probability distributions) are the largest possible; see, e. g., [11, 14].

Measurement errors corresponding to different measurements are usually as-
sumed to be independent. The probability of several independent events occur-
ring together is equal to the product of the corresponding probabilities. Thus,
for the normal distribution (6), the above implies that we have to select the
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unknown parameters p that maximize the product

L =

m∏
i=1

ρ(∆y(i)) =

m∏
i=1

1

σ
√

2π
· exp

(
− (∆y(i))2

2σ2

)
.

Substituting the expression ∆y(i) = ỹ(i) − f(x(i), p) into this formula, we con-
clude that p should maximize the product

L =

m∏
i=1

1

σ
√

2π
· exp

(
− (ỹ(i) − f(x(i), p))2

2σ2

)
.

The constant coefficient 1/(σ
√

2π) is the same for all i, so we have

L =
1

(σ
√

2π)m
·

m∏
i=1

exp

(
− (ỹ(i) − f(x(i), p))2

2σ2

)

=
1

(σ
√

2π)m
· exp

(
− 1

2σ2

m∑
i=1

(
ỹ(i) − f(x(i), p)

)2)
.

From monotonicity of the function exp, it follows that maximizing L is equiva-
lent to minimizing the sum

m∑
i=1

(
ỹ(i) − f(x(i), p)

)2
. (7)

We thus arrive at the well-known least squares method independently pro-
posed by A.-M. Legendre and K. F. Gauss (see, e. g., [6, 11]): the value of the
parameter p under estimation should be selected so that the sum of the squares
of the approximation errors ∆y(i) = ỹ(i)−f(x(i), p) is the smallest possible. Us-
ing the least squares method is an asymptotically optimal way to estimate the
parameters from the observations when the measurement errors are normally
distributed with zero mean [6, 11].

Need to consider situations where the error distribution is not known,
in particular, the situation of interval uncertainty. The above approach
and the least squares method are not universal. As we have mentioned, for
about 40% of measuring instruments, the measurement errors are not normally
distributed. Moreover, often, we do not have enough measurements to determine
the actual shape of the corresponding probability distribution, which is known
as “small sample size” problem.

In many such situations, the only information we know is that the possible
values of the measurement error are located within some bounds ∆ and ∆, but
we do not know the probability of different values within the interval [∆,∆]; see
numerous examples in [22].

Such is the situation with many real-life sensors. In principle, we can com-
pare the results of using a given sensor with the results of measuring the same
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quantity by a super-accurate measuring instrument and thus, get the desired
probability distribution of the measurement error. However, such a calibration
is usually very expensive — often several orders of magnitude more expensive
that the price of the sensor itself. In such cases, the only information that we
have about the measurement error is the upper bound on its absolute value —
this information is usually provided by the manufacturer of the corresponding
measuring instrument.

Instead of calibrating each individual measuring instrument, practitioners
often simply compose it of several components with known characteristics and
known tolerances, i. e., known bounds on the difference between the actual and
the nominal values of these characteristics. In this case, we only know the
bounds on the corresponding values of the measured quantity, that is, only
bounds on the measurement error.

What shall we do in this case?

How to estimate the parameters when the error distribution is not
known. Situations when we do not know the exact probabilistic distribution
of the measurement errors are ubiquitous. Then, several different distributions
can be consistent with our knowledge. Some of these distributions are more
informative, some are less. It is reasonable to select, among all the distributions,
the one with the least possible amount of information, i. e., the one which does
not add anything to our knowledge that the random variable is located on
a given interval.

If a random variable has the probability density function ρ(x), the amount
of information it bears is usually described by the entropy

S = −
∫ ∞
∞

ρ(x) ln ρ(x) dx (8)

(see, e. g., [2, 8, 17]). In fact, the entropy gives a measure of how chaotic
the probabilistic distribution is; the more entropy of a distribution, the less
informative it is. Then the above idea means that, among all the probability
distributions ρ(x) consistent with our knowledge, we should select the one for
which entropy (8) attains the largest possible value. This consideration is known
as the maximum entropy approach.

Let us apply the maximum entropy approach to the case when the only
information about the probability distribution is that it is located on the interval
[∆,∆], i.e., that ρ(x) = 0 for x 6∈ [∆,∆]. Thus, we need to maximize the entropy

S = −
∫ +∞

−∞
ρ(x) ln ρ(x) dx = −

∫ ∆

∆

ρ(x) ln ρ(x) dx. (9)

Additionally, expression (9) should be maximized under the constraint that the
overall probability is 1, i. e., ∫ ∆

∆

ρ(x) dx = 1. (10)
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The method of Lagrange multipliers reduces this constraint optimization
problem to an unconstrained problem of maximizing the function

−
∫ ∆

∆

ρ(x) ln ρ(x) dx+ λ ·

(∫ ∆

∆

ρ(x) dx− 1

)
,

where λ is a Lagrange multiplier. Taking the functional (variational) derivative
over ρ(x) (see [4]) and equating this derivative to 0, we conclude that

− ln ρ(x)− 1 + λ = 0,

hence ln ρ(x) = λ−1 = const and thus, ρ(x) = const. The value of this constant
can be determined from equality (10) that the overall probability should be equal
to 1. Therefore, we have a uniform distribution with the probability density

ρ(x) =
1

∆−∆
= const. (11)

The conclusion that we should select a uniform distribution is in good ac-
cordance with common sense. Indeed, since we have no reason to believe that
some values from the interval [∆,∆] are more probable and some values are less
probable, it makes sense to select a distribution in which all these values are
equally probable, i. e., a uniform distribution on this interval.2

As we have mentioned, it is usually reasonable to assume that the main part
of the systematic error (bias) has already been eliminated, and thus, the mean
value for the measurement error is 0. For a uniform distribution, the mean
value is equal to the midpoint of the corresponding interval, and the above
requirement takes the form

∆ + ∆

2
= 0.

Hence, if we denote ∆
def
= ∆, then ∆ = −∆, and the interval should be [−∆,∆]

for a certain value ∆.

How to estimate the parameters in the case of uniform error distribu-
tion. In this situation, we have l+ 1 unknowns: l parameters p = (p1, . . . , pl)
and the parameter ∆ that characterizes the measurement uncertainty. To find
the parameters, we are going to use, similar to the case of normal error distri-
bution, the Maximum Likelihood Method, i. e., we maximize the product

L =

m∏
i=1

ρ(∆y(i)).

The probability distribution ρ(x) is located on the interval [−∆,∆]. Therefore,
if the absolute value |∆y(i)| of one of the measurement errors ∆y(i) exceeds ∆,

2The mathematical fact that the uniform distribution provides the maximum entropy is
widely known, being a “mathematical folklore”, and its proof can be found in many sources,
e. g., in [17].
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then the corresponding factor ρ(∆y(i)) equals 0, and consequently, the entire
product L is equal to 0, too.

To find the desired maximum of L, we have to consider only the values p
and ∆ for which

|∆y(i)| ≤ ∆, i = 1, 2, . . . ,m, (12)

i. e., for which ∆ ≥ maxi |∆y(i)|. For such values, ρ(∆y(i)) = 1/(2∆) according
to (11), and the product L takes the form

L =
1

(2∆)m
.

This expression is the largest if and only if the corresponding value ∆ is the
smallest.

For fixed p, the only restriction on ∆ is that

∆ ≥ max
1≤i≤m

|∆y(i)| = max
1≤i≤m

∣∣ ỹ(i) − f(x(i), p)
∣∣.

Thus, for each tuple p, the smallest possible ∆ is the smallest value that satisfies
this inequality, i. e., it is the value

∆ = max
1≤i≤m

∣∣ ỹ(i) − f(x(i), p)
∣∣. (13)

We want to select the parameters p for which the probability L is the largest,
i. e., equivalently, for which the value ∆ described by formula (13) is the small-
est. Thus, in situations where the shape of the probability distribution of the
measurement error is not known, we should select the parameters p for which
expression (13) is the smallest possible, i. e., for which

min
p

max
1≤i≤m

∣∣ ỹ(i) − f(x(i), p)
∣∣ (14)

is attained.
The above result, expressed by formulas (13)–(14), is not quite trivial, and

it makes sense to comment on it. In principle, estimating the parameters p =
(p1, p2, . . . , pl) of the unknown functional dependency y = f(x, p) that best fit
the given data amounts to computing, for the equation system (5), a “pseudo-
solution” that minimizes the discrepancy between the left-hand and right-hand
sides of (5). To do that, we construct the defect vector d ∈ Rm from the
differences di = (ỹ(i) − f(x(i), p)), i = 1, 2, . . . ,m, between the left-hand and
right-hand sides of system (5), and then make it as small as possible. In fact,
this means that we take a norm of the defect vector as a general measure of how
large it is, and then minimize this norm over p. If the minimum of the norm
of the defect equals zero, we get an exact solution to system (5). Otherwise, a
pseudo-solution is obtained that corresponds to approximation of the data set
by the best-fit line (the situation depicted at Fig. 1).

A norm of the defect vector can be constructed from the defects of sepa-
rate components di =

(
ỹ(i) − f(x(i), p)

)
, i = 1, 2, . . . ,m, in various ways. In
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particular, taking the Euclidean norm (2-norm) of the defect, i. e.,

‖d‖2 =

(
m∑
i=1

d2
i

)1/2

,

results in (7) and corresponds to the least squares method. Our reasoning above
shows that only the Chebyshev norm (∞-norm), i. e.,

‖d‖∞ = max
1≤i≤m

|di|,

has a clear probabilistic interpretation when we do not know of any information
about the probability density functions of the error. Formula (13) expresses the
essence of popular “minimax estimation” (see, e. g., [7, 11, 35]), and it is often
used without any probabilistic context due to its clear meaning.

To conclude this section, we note that the experience of applying the Max-
imum Likelihood Method for jointly considering interval and probabilistic ap-
proaches in the data fitting problems is not new. S. Zhilin in [37] used the max-
imum likelihood estimation in an experimental study of the correlation between
different types of estimates. The conclusion made in [37] based on extensive
numerical simulation is that the non-probabilistic interval-based estimates are
very good and even the best ones for uniform or nearly uniform probabilistic
distributions.

3 Specific Features of Interval Approaches

In interval approaches to the data fitting problem, we assume that the only
information we have about each measurements error ∆y(i) is the upper bound
on its absolute value: |∆y(i)| ≤ ∆. In this case, the only information that
we have about each actual (unknown) value y(i) = f(x(i), p) is that this value
belongs to the interval

y(i) def
=
[
ỹ(i) −∆, ỹ(i) + ∆

]
, i = 1, 2, . . . ,m.

Then, the inequalities (12)

|∆y(i)| =
∣∣ỹ(i) − f(x(i), p)

∣∣ ≤ ∆

can be equivalently rewritten as

f(x(i), p) ∈ y(i), i = 1, 2, . . . ,m. (15)

In this case, the sense of the parameter estimation is depicted in Fig. 2: we have
to construct a line from a given parametric family that “best fits” the interval
data in a prescribed sense. Notice that such “best fit line” may go through each
segment representing data uncertainty or, alternatively, may not do that. In the
former case, when the constructed line intersects all the uncertainty intervals
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(xi,y
(i)), i = 1, 2, . . . ,m, we say that the parameters of the line are compatible

with the interval data.
Overall, instead of the equation system (5), we arrive at an analogous system

of interval equations 

f(x(1), p) = y(1),

f(x(2), p) = y(2),

...
...

...

f(x(m), p) = y(m),

(16)

that we have to “solve” with respect to p for parameter estimation.

x

y

Figure 2: Data fitting problem for interval measurement data:
we have to construct a line that best fits the data.

In modern interval analysis, there exist several concepts of “solution” and
“solution sets” to interval systems of equations, and the most relevant to our
task is the so-called “united solution set”. It is defined as the set of all solutions
to the usual point systems of the same form with the parameters taken from the
prescribed intervals. For (16), the united solution set is formally determined as

Ξ =
{
p ∈ Rn |

(
∃y(1) ∈ y(1)

)
· · ·
(
∃y(m) ∈ y(m)

)(
f(x(1), p) = y(1)

)
& · · ·&

(
f(x(m), p) = y(m)

)}
,

(17)

being made up of solutions to the usual (point) systems of the form (3) with y(1),
y(2), . . . , y(m) from the intervals y(1), y(2), . . . , y(m). If the solution set Ξ is
not empty, it describes the set of parameters compatible with the measurement
data set

x(1), y(1),

x(2), y(2),

· · · , · · · ,
x(m), y(m),

(18)
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and each p ∈ Ξ can be taken as a solution to the data fitting problem, i. e., as
an estimate of the parameters. Still, set (17) may not coincide with the set of
solutions to the data fitting problem in general, owing to additional requirements
on the parameter estimates that can be present in the problem statement. This
is why we are going to use, with respect to (17), the term feasible parameter
set, popular in the set-membership estimation theory.

The Demidenko paradox. The case of nonempty feasible parameter set Ξ
is the most favorable in interval data fitting, but we do not have to reject the
opposite case when the set Ξ is empty. Then there does not exist p strictly
compatible with the data set (18), but this in no way means that the data
fitting problem is not solvable. This only means that its solution has the other
status. For better understanding of our reasoning, it is worth reminding that
for usual non-interval data fitting problem, which is the limit case of the interval
problem statement, the compatibility between the data and parameters in the
sense of our definition is mostly unachieved, being a very rare and exceptional
event.

Moreover, if possible emptiness of the feasible parameter set is not taken into
account, we can come to a paradox that was first noticed by E. Demidenko in
the note [3]. Its essence can be described in short by the phrase “the better, the
worse”. Specifically, the more accurate are our measurements and more narrow
the uncertainty intervals y(1), y(2), . . . , y(m), the more likely that the feasible
parameter set Ξ is empty, and the data fitting problem looks “unsolvable”.
Conversely, if we organize crude measurement and our errors are large, the
intervals y(1), y(2), . . . , y(m) are wide, but this enlarges the feasible parameter
set Ξ, and it is easier to take an estimate of the parameters from it.

In fact, the Demidenko paradox is based on the assumptions that

(i) the intervals y(1), y(2), . . . , y(m) represent rigorous bounds
on the actual values of our measurements and falling out-
side them is impossible,

(ii) the function f exactly represents the functional dependency
between x and y.

Any one or both of the above points can be violated in real life problems. For
example, we can consider the intervals y(1), y(2), . . . , y(m) as “soft” bounds
on the respective measurements: these bounds are not obligatory for the actual
values of y(1), y(2), . . . , y(m), but rather serve as estimates of their ranges. Our
data can have outliers that spoil the ideal measurements picture. The function
f may be an approximation to the actual dependency between x and y taken
(e. g., from physical, chemical, economic, etc., reasons) merely as a dominant
trend. And so on.

Therefore, the emptiness of the feasible parameter set should not be per-
ceived as a signal for terminating the solution of the data fitting problem. We
have to accept the possibility for the feasible parameter set to be empty, the
possibility that there are no parameters strictly compatible with the processed
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Bad accuracy and wide uncertainty intervals enable one
to construct many models compatible with the data:

x

y

For better accuracy and narrow uncertainty intervals,
there might not exist a model compatible with the data:

?

x

y

Figure 3: The essence of the Demidenko paradox.

data. Even more, our approach to the data fitting and parameter estimation for
interval data should successfully cope with this “double-layer character” of the
problem, providing a uniform treatment of the two situations when the feasible
parameter set is either empty or nonempty. This is a specific feature of the data
processing under essentially interval uncertainty.

Minimax estimation for interval data. Let us turn to the minimax esti-
mation (13)–(14) derived from the Maximum Likelihood Method described in
the previous section.
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Inclusions (15) mean that if the upper bound on the absolute value of the
measurement error is equal to ∆, then the actual value f(x(i), p) of the quan-
tity y agrees with the measurement result ỹ(i). In these terms, expression (13)
is the smallest bound ∆ for which all the measurement results agree with the
actual values; the selected value p is the one for which the difference between
the measurement results and the actual values is the smallest possible. Over-
all, a natural probabilistic approach to estimating parameters, the Maximum
Likelihood Method, leads to an “interval-ready” formula (14) for parameter esti-
mation, which can be directly applied to data fitting under interval uncertainty.
However, some points should be tuned to this specific case.

Under certain conditions, we may have a priori bounds on some parameters
pj , i. e., the values p

j
and pj for which the actual (unknown) value pj satisfies

the inequality p
j
≤ pj ≤ pj . Then we should minimize expression (13) for ∆

only over the tuples p = (p1, . . . , pl) which satisfy these inequalities.
Very often, we can be interested only in some of the parameters. Without

losing generality, let us assume that we have to find the values of the parameters
p1, . . . , p` for some ` < l, while the parameters p`+1, . . . , pl are not interesting
for us. Then we can use the mathematical fact that

min
p1,p2,...,pl

max
1≤i≤m

∣∣ ỹ(i) − f(x(i), p)
∣∣

= min
p1,p2,...,p`

min
p`+1,...,pl

max
1≤i≤m

∣∣ ỹ(i) − f(x(i), p)
∣∣.

In other words, minimizing expression (13) over all the tuples (p1, . . . , pl) is
equivalent to minimizing an auxiliary expression

Φ(p1, p2, . . . , p`)
def
= min

p`+1,...,pl

max
1≤i≤m

∣∣ ỹ(i) − f(x(i), p)
∣∣ (19)

over the parameters p1, . . . , p`. This trick may prove very helpful in situations
when we want to convert some uncertain factors into parameters.

Plateau-like extremum region. Yet another specific feature of the data
fitting problem under essential interval uncertainty is that its feasible parameter
set Ξ may be a “real” non-singleton set made up of infinitely many points.
In fact, such feasible parameter sets can have nonempty interior and nonzero
measure, so that the solution to the minimization problem (19) is achieved at
a whole region in R`. In mathematical terms, this feature is expressed by the
fact that the feasible parameter set, i. e., the united solution set to the interval
equation system (16) that we have to solve for constructing the best fit line,
is a solid set. For every point of such feasible parameter set, the norm of the
defect maxi |ỹ(i)−f(x(i), p)| is precisely zero. Hence, the objective function (19)
attains its minimum at a zero level plateau like that depicted at the right-hand
side of Fig. 4. That is very disadvantageous for our minimization problem, both
in itself and due to practical reasons.

First of all, checking whether a point belongs to the feasible parameter set
amounts to testing unstable equality of the objective function (19) to zero.
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Furthermore, the points of the feasible parameter set Ξ are, in reality, different
from each other with respect to the data fitting problem. In particular, it makes
sense to distinguish between points of the boundary and in the interior of the
set Ξ, since the latter are stable under data perturbations. Choosing interior
points of the feasible parameter set Ξ as parameter estimates is preferable, but
the objective function (19) does not allow us to do that.

p0 p0

Figure 4: Various configurations of the minima
in (14) and (19) depending on their signs.

It is intuitive that the estimates taken somewhere in the “middle” of the
feasible parameter set Ξ are “more robust” and even “more probable” than those
on the boundary. This is confirmed, for example, by computational experiments
from [26] demonstrating that the uniform probabilistic distributions over input
variables of a function lead to a non-uniform distribution over its range of values,
with the maximum probability density in the central area.

p0

Figure 5: Desirable configuration of the negative minimum.

The situation with the zero-level plateau in the minimax estimation (Fig. 4,
right) should be corrected, and some parameter estimation methods do that
during their execution. For example, in the uncertainty center method from [21,
37, 38], the estimate is taken as the middle point of the outer box for the feasible
parameter set. Ideally, it would be desirable to have the configuration of the
minimum for (19) like that depicted at Fig. 5, where the objective function helps
distinguishing the interior points from the feasible parameter set. In Section (5),
we will show how one can naturally improve, in the above sense, the minimax
estimation for interval data fitting with the linear functional dependency.
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4 Straight Line Fitting

As an example of applying the ideas developed in the preceding sections, let
us consider the problem of solving an m× n-system of interval linear equations
that arises in the interval data fitting problem for linear functional dependency.
It is often called the “linear regression problem”.

Suppose that we are given a system of linear equations

n∑
j=1

aijzj − bi = 0, 1 ≤ i ≤ m, (20)

under interval uncertainty, when we only know that aij and bi belong to intervals
aij = [aij , aij ] and bi = [bi, bi], respectively. One can think that an interval
m × n-matrix A = (aij) and an interval m-vector b = (bi) are given that
specify an interval linear system of algebraic equations Az − b = 0, which is
equivalent to Az = b. We are interested in the values of the variables z1, . . . ,
zn that “best fit” equalities (20) under the uncertainty represented by the data
set aij , bi, i = 1, . . . ,m, j = 1, . . . , n (see Fig. 6).

a

b

Figure 6: Straight line fitting for intervally uncertain data.

The problem is in close relationship with the general data fitting problem
we have considered in the previous sections. One can see here m observations
from which we wish to determine the desired parameters z1, z2, . . . , zn. As for
the interval data aij , bi, i = 1, . . . ,m, j = 1, . . . , n, we will not consider them
as measurement results, but represent them as additional parameters using the
technique elaborated at the end of the previous section. Hence, in our problem
statement, the number ` of the desired parameters is n, and these parameters
p1, p2, . . . , p` from formulation (19) coincide with z1, z2, . . . , zn from (20).
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In addition to these ` = n parameters of interest, we also have the following
auxiliary parameters:

m · n parameters aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n,
for which we are given the bounds aij and aij ;

m parameters bi, 1 ≤ i ≤ m,
for which we are given the bounds bi and bi.

In total, we consider n + mn + m parameters, which can be represented as
a long composite vector p = (z,A, b), A = (aij), b = (bi). As an input x(i) of
the function that describes the i-th observation, we can take simply x(i) = i.
Overall, the model-based value f(x, p) of the observed functional dependency is

f(x(i), p) = f(i, z, A, b) =
n∑

j=1

aijzj − bi,

while the observed value y(i) is always equal to 0.
For this problem, formulation (19) originated from the Maximum Likelihood

Method leads to selecting the values z1, . . . , zn for which the following expression
is minimized:

Φ(z) = min
aij∈aij ,bi∈bi

max
1≤i≤m

∣∣∣∣∣
n∑

j=1

aijzj − bi

∣∣∣∣∣.
Here, each of the parameters aij , j = 1, 2, . . . , n, and bi occurs only in the i-
th expression under min1≤i≤m. Hence, minimizing max1≤i≤m is equivalent to
minimizing the corresponding expression for each i:

Φ(z) = max
1≤i≤m

min
aij∈aij ,bi∈bi

∣∣∣∣∣
n∑

j=1

aijzj − bi

∣∣∣∣∣. (21)

Next, the inner minimum in (21) can be found explicitly. The range of values
of the linear expression

∑n
j=1 aijzj − bi over all aij ∈ aij and bi ∈ bi coincides

with its natural interval extension due to the fundamental theorem of interval
arithmetic [16, 18, 31]. Therefore,

min
aij∈aij ,bi∈bi

∣∣∣∣∣
n∑

j=1

aijzj − bi

∣∣∣∣∣ =

〈
n∑

j=1

aijzj − bi

〉
,

where 〈·〉 means mignitude of the interval (see [18, 31]), the smallest distance
from points of the interval to zero:

〈u〉 =

{
min{ |u|, |u| }, if 0 6∈ u,

0, otherwise.

Overall, as a refinement of the problem statement (19), we arrive at the following
optimization problem:

find min
z1,z2,...,zn

Φ(z1, z2, . . . , zn), (22)
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where

Φ(z) = Φ(z1, z2, . . . , zn) = max
1≤i≤m

〈
n∑

j=1

aijzj − bi

〉
. (23)

For interval systems of linear algebraic equations Az = b, the united solution
set (also called just solution set) is defined, similar to (17), as the set of all
solutions to the point systems Az = b with A ∈ A and b ∈ b. In formal terms,
the united solution set to Az = b is

Ξ(A, b)
def
=
{
z ∈ Rn | (∃A ∈ A)(∃b ∈ b)(Az = b )

}
. (24)

As before, the set Ξ(A, b) is the “feasible parameter set” for our data fitting
problem under interval uncertainty, i.e., the set where there is strict compati-
bility between the data and the parameters of the straight line.

If the set Ξ(A, b) is empty, then the minimum in the optimization problem
(23)–(22) is strictly positive, which corresponds to the left-hand side picture in
Fig. 4. A specific feature of our situation is that the objective function Φ(z) is
non-smooth (piecewise linear), and its minimum is attained at a sharp point of
its graph. If the set Ξ(A, b) is nonempty, then the minimum in (22) is zero,
which corresponds to the right-hand side picture in Fig. 4. The minimum is
then attained at any point of the set Ξ(A, b), i. e., the united solution set to
the interval linear system Az = b.

Taking into account the considerations of the preceding section, the next
question arises: how can we correct the construction to improve the objec-
tive function and avoid plateau-like minima sets at the zero level in the case
of nonempty feasible parameter sets? This can be done in a natural way we
describe in the following section.

5 Maximum Compatibility Method

To relate the results of the preceding section to known interval estimation tech-
niques, it is necessary to transform the problem statement (22)–(23). We will
need the following property of the mignitude (see [18, 31]): for any intervals u
and v,

〈u± v〉 ≥ 〈u〉 − |v|. (25)

Equality instead of the non-strict inequality (25) holds in the case that 〈u〉 ≥ |v|
and the interval v is balanced (symmetric with respect to zero), i. e., has the
form v = [−ṽ, ṽ] for a nonnegative ṽ. The short proof is as follows:

〈u± v〉 = min
u∈u
v∈v
|u± v| ≥ min

u∈u
v∈v

(
|u| − |v|

)
= min

u∈u
|u| −max

v∈v
|v| = 〈u〉 − |v|.

If v is a balanced interval, then, for any u ∈ u, there exists such v ∈ v that the
equality |u± v| = |u| − |v| holds, no matter what the interval u is. Hence, the
equality instead of the inequality in the above relations really takes place.
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Recognizing functional Uni. For each index i = 1, 2, . . . ,m, we can evalu-
ate subexpressions of (23) as follows:〈

n∑
j=1

aijzj − bi

〉
=

〈
n∑

j=1

aijzj −mid bi − [−1, 1] · rad bi

〉

≥

〈
n∑

j=1

aijzj −mid bi

〉
−
∣∣[−1, 1] · rad bi

∣∣
=

〈
n∑

j=1

aijzj −mid bi

〉
− rad bi

due to property (25). Notice that the equality instead of non-strict inequality
is valid for the case 〈

n∑
j=1

aijzj −mid bi

〉
≥ rad bi.

Since the mignitude is always nonnegative, we have〈
n∑

j=1

aijzj − bi

〉
= max {ψi(z), 0 },

where

ψi(z)
def
=

〈
n∑

j=1

aijzj −mid bi

〉
− rad bi.

In summary,
Φ(z) = max

1≤i≤m
max

{
ψi(z), 0

}
.

Reversing the order of the two maximum operations, we get

Φ(z) = max
{

Ψ(z), 0
}
, (26)

where

Ψ(z)
def
= max

1≤i≤m
ψi(z) = max

1≤i≤m


〈

n∑
j=1

aijzj −mid bi

〉
− rad bi

 .

One can see that Ψ(z) differs only by the opposite sign from the so-called
recognizing functional of the united solution set Ξ(A, b) to the interval linear
system Az = b, which is defined as

Uni (z)
def
= min

1≤i≤m

 rad bi −

〈
mid bi −

n∑
j=1

aijzj

〉 .

Uni (z) was proposed and studied in [27, 30]. Thus, the minimized functional
Φ(z) = max {Ψ(z), 0 } is related to the functional Uni(z) as

Φ(z) = max {−Uni (z), 0 } = −min {Uni (z), 0 }.
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Recognizing functional Uss. We can perform our transformations of ex-
pression (23) for Φ in another way. For each index i = 1, 2, . . . ,m, there holds〈

n∑
j=1

aij zj − bi

〉

=

〈
n∑

j=1

(
midaij + [−1, 1] · radaij

)
zj −mid bi − [−1, 1] · rad bi

〉

=

〈
n∑

j=1

(midaij) zj +

n∑
j=1

[−1, 1] (radaij) zj −mid bi + [−1, 1] · rad bi

〉

due to distributivity of multiplication with respect
to addition for the common point multipliers zj

≥

〈
n∑

j=1

(midaij) zj −mid bi

〉
−

∣∣∣∣∣
n∑

j=1

[−1, 1] (radaij) zj + [−1, 1] · rad bi

∣∣∣∣∣
due to property (25) of the mignitude

=

∣∣∣∣∣
n∑

j=1

(midaij) zj −mid bi

∣∣∣∣∣ −
n∑

j=1

(radaij) |zj | − rad bi,

since all the intervals [−1, 1] (radaij) zj , [−1, 1] · rad bi are symmetric with re-
spect to zero, and

(∑n
j=1 (midaij) zj − mid bi

)
is a point, not an interval.

Therefore,〈
n∑

j=1

aij zj − bi

〉
≥

∣∣∣∣∣ mid bi −
n∑

j=1

(midaij) zj

∣∣∣∣∣−
n∑

j=1

(radaij) |zj | − rad bi,

and the equality instead of non-strict inequality is valid for the case∣∣∣∣∣ mid bi −
n∑

j=1

(midaij) zj

∣∣∣∣∣ ≥
n∑

j=1

(radaij) |zj |+ rad bi.

Since the mignitude is always nonnegative, we have〈
n∑

j=1

aijzj − bi

〉
= max { υi(z), 0 },

where

υi(z)
def
=

∣∣∣∣∣
n∑

j=1

(midaij) zj −mid bi

∣∣∣∣∣−
n∑

j=1

(radaij) |zj | − rad bi.
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In summary,
Φ(z) = max

1≤i≤m
max

{
υi(z), 0

}
Reversing the order of the two maximum operations, we get

Φ(z) = max
{

Υ(z), 0
}
, (27)

where

Υ(z)
def
= max

1≤i≤m


∣∣∣∣∣

n∑
j=1

(midaij) zj −mid bi

∣∣∣∣∣ −
n∑

j=1

(radaij) |zj | − rad bi

 .

One can see that Υ(z) differs only by the opposite sign from the so-called
recognizing functional of the united solution set Ξ(A, b) to the interval linear
system Az = b, which is defined as

Uss (z) = min
1≤i≤m

 rad bi +

n∑
j=1

(radaij) |zj | −

∣∣∣∣∣∣ mid bi −
n∑

j=1

(midaij) zj

∣∣∣∣∣∣
 .

Uss (z) was introduced and investigated in [28, 29, 32]. Thus, the minimized
functional Φ(z) = max {Υ(z), 0 } is related to the functional Uss (z) as

Φ(z) = max {−Uss (z), 0 } = −min {Uss (z), 0 }.

The sense and general properties of recognizing functionals. The rec-
ognizing functionals Uni and Uss were introduced in [27, 28, 29, 30, 32] to give
a numerical measure that characterizes compatibility of interval linear equation
systems.

According to the result from [30], a point z ∈ Rn belongs to the united
solution set Ξ(A, b) if and only if〈

Az −mid b
〉
≤ rad b,

where the mignitude is applied component-wise. Hence, the amount to which
the right-hand side of the above inequality exceeds its left-hand side, i. e., the
difference

rad b−
〈
Az −mid b

〉
, (28)

can be taken as a numerical measure of compatibility between the parameter
vector z and the data A and b. To construct a unified scalar characteristic, we
convolve vector (28) by taking the minimum of its components. This way, the
functional Uni is obtained.

The membership of a point z ∈ Rn in the united solution set Ξ(A, b) to the
interval linear equation system Az = b is equivalent to the non-negativeness of
the functional Uni in z:

z ∈ Ξ(A, b) ⇐⇒ Uni (z,A, b) > 0.
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The well-known Oettli-Prager inequality (see [18, 23]) may serve as a base
for yet another compatibility measure. Namely, a point z ∈ Rn is known to
belong to the united solution set Ξ(A, b) if and only if∣∣midA · z −mid b

∣∣ ≤ radA · |z|+ rad b,

where the magnitude (absolute value) is applied componentwise. Hence, the
amount to which the right-hand side of the above Oettli-Prager inequality ex-
ceeds its left-hand side, i. e., the difference

radA · |z|+ rad b−
∣∣midA · z −mid b

∣∣, (29)

can be taken as a numerical measure of compatibility between the parameter
vector z and the data A, b. To construct a unified scalar characteristic, we
convolve vector (29) by taking the minimum of its components. This way, the
functional Uss is obtained.

The membership of a point z ∈ Rn in the united solution set Ξ(A, b) to the
interval linear equation system Az = b is equivalent to the non-negativeness of
the functional Uss in z:

z ∈ Ξ(A, b) ⇐⇒ Uss (z,A, b) > 0.

Below, we give a short survey of the properties of the recognizing functionals
Uni and Uss as they are presented in [27, 28, 29, 30, 32].

The functionals Uni and Uss are concave functions of z in each orthant of
the space Rn. If, additionally, the matrix A is such that its columns with the
indices from the set J = {j1, j2, . . . , jr}, r ≤ n, are intervals, while the remaining
columns are real numbers (degenerate intervals), then the functionals Uni and
Uss are concave on each of the 2r sets of the form { z ∈ Rn | zj ≷ 0, j ∈ J },
where “≷” denotes one of the relations “≥” or “≤”.

The functionals Uni and Uss are polyhedral, that is, their graphs are made up
of finite numbers of hyperplane pieces (that can be seen at Fig 8). Additionally,
the functional Uni reaches a finite maximum with respect to z over the entire
space Rn.

On the other hand, for interval linear systems with nonempty united solution
set, the recognizing functionals can help distinguishing interior and boundary
of the solution set, etc. In particular, if Uni (z) > 0 or Uss (z) > 0, then z is
a point from the topological interior of the solution set, which immediately fol-
lows from the continuity of Uni and Uss. Under certain additional requirements,
the converse is also true [28, 29]. Overall, the recognizing functionals prove to
be very useful tools for examination of the “fine structure” of the solution sets.

Both functionals, Uss and Uni, have similar properties, and each one of them
is intended for its own problems. In particular, the functional Uni takes into
account the right-hand side of the system to a greater extent than the functional
Uss. Hence, Uni may be useful in problems where the corresponding variables
are of much importance.

The recognizing functionals may be considered as a tool to find a kind of
solution to a system of interval equations when we have underestimated the
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uncertainty with which we know the parameters. The corresponding system of
interval linear equations has no solutions, i. e., its united solution set is empty.
Then one can use the vector for which the functional Uni or Uss attains its
largest possible value as a pseudo-solution with the minimum possible incom-
patibility.

−1 −0.5 0 0.5 1 1.5 2 2.5 3
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Figure 7: Solution set to the interval linear system (30).

An example of interval linear system and its recognizing functionals.
As an example, we consider the interval linear algebraic system(

[2, 4] [−2, 0]

[−1, 1] [2, 4]

) (
z1

z2

)
=

(
[−1, 1]

[0, 2]

)
, (30)

whose solution set is depicted in Fig. 7.3

The pictures in Fig. 8 show graphs of the recognizing functionals Uni and
Uss of the solution set for system (30). The difference between the two pictures
is small, but in the graph of Uss, the maximum is a “sharp peak” of height 1.44
attained at the point (0.1, 0.33)>, while the graph of Uni has a flat maximum
region at the height 1 around the argument point (0.5, 0.5)>.

For negative values, the functionals Uni and Uss totally coincide with each
other, as was substantiated at the beginning of the section. But for nonnegative
values, each one of them shows its own “compatibility measure”, according to
their constructions, for the data given by the interval linear system (30).

Maximum Compatibility Method. In view of the above results, the situ-
ation when the interval system has empty solution set corresponds to the case

3The picture has been obtained with the use of the visualization package IntLinInc2D [25].
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Figure 8: Graphs of the recognizing functionals Uni and Uss for system (30).
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when Ψ(z) > 0 and Υ(z) > 0 for all z, i. e., when

Uni (z) = −Ψ(z) < 0 and Uss (z) = −Υ(z) < 0 for all z ∈ Rn.

Then we have
−Φ(z) = min

{
Uni (z), 0

}
= Uni (z)

and, at the same time,

−Φ(z) = min
{

Uss (z), 0
}

= Uss (z).

Hence, minimizing Φ(z) in our problem (22)–(23) is equivalent to unconstrained
maximization of Uni (z) or Uss (z).

The approach to data fitting and parameter estimation based on maximiza-
tion of the recognizing functional for the solution set is called the Maximum
Compatibility Method (the name “maximum consistency method” was also used
in the previous works [27, 32]). As an estimate of parameters, we take the ar-
gument of the recognizing functional where its maximum is attained. The term
“maximum compatibility” is justified because the recognizing functionals, both
Uni and Uss, show, as was demonstrated earlier, the degree of compatibility
between the data A and b and parameters z1, z2, . . . , zn of the regression line.
If the maximum of the recognizing functional is nonnegative, then our estimate
is compatible with the input data in the sense of the definition from Section 3.

If the maximum of the recognizing functional is negative, no compatibility
can be achieved between any parameter estimate and the data, but the point we
have found is the best one, since it provides the minimum possible value of “in-
compatibility”. In the limiting case of non-interval (point) data, maximization
of any recognizing functional is equivalent to minimizing the Chebyshev norm
(maximum-norm) of the defect of the equation system (20) (see [32]). The
Maximum Compatibility Method thus turns into “Chebyshev data smoothing”,
which is applied successfully in data processing.

The idea of the Maximum Compatibility Method comes from interval anal-
ysis, while the idea of minimizing the functional Φ(z) in (22)–(23) comes from a
natural probabilistic approach, the Maximum Likelihood Method. In the case of
an empty feasible parameter set, the estimates produced by these two methods
coincide. The Maximum Compatibility Method thereby acquires a probabilistic
justification.

To improve the situation with the zero-level minimum plateau in the straight
line fitting problem (22)–(23), it makes sense to change the objective function
Φ within the nonempty solution set Ξ(A, b). We can take either Ψ instead
of Φ = max {Ψ, 0 }, or Υ instead of Φ = max {Υ, 0 }, thus removing the cut-
off with zero in both cases. This eliminates the zero plateau at the minimum
of Φ for nonempty feasible parameter set. On the other hand, this idea has
been already implemented in the Maximum Compatibility Method, where one
maximizes the recognizing functionals Uni = −Ψ or Uss = −Υ. Moreover, the
Maximum Compatibility Method is a uniform numerical procedure in which an
automatic switching takes place, depending on a specific situation, between the
two dissimilar parts of the data fitting problem under interval uncertainty that
correspond to empty and nonempty feasible parameter set.



130 Vladik Kreinovich, Sergey Shary, Interval Methods for Data Fitting . . .

6 Practical Example

As a practical example, we consider an electrochemistry problem of determining
the parameters of the temperature dependency of electrolyte ionic conductivity
based on the unique experimental data from [34]. Previously, it has been treated
by interval methods in [10]. The problem setting is not the most general, but
the function that we fit to data is nonlinear, which helps us illustrate some
important concepts of the interval data fitting.

Problem statement. The functional dependency under study has the form

S(y) = V exp(αy) +BG, (31)

where S is the electrolyte conductivity, y is the independent variable, and the
quantities α, V , and BG are to be determined from the measurements. BG
is the background component. The independent variable y is expressed from
the absolute temperature T of melted electrolyte as (T/K)−1, with a known
constant K.

We have to process a sample of eight measurements, performed at the values
yi, i = 1, 2, . . . , 8, of the independent variable y that are equal to

0.002481, 0.002544, 0.002583, 0.002658,
0.002785, 0.002915, 0.003002, 0.003124.

(32)

Electrolyte conductivity values in decimal logarithmic scale are

− 1.339, −1.473, −1.561, −1.715, −1.994, −2.149, −2.205, −2.275, (33)

while in natural scale (obtained from (33) by exponentiation with the base 10)
they correspond to the conductivities Si = S(yi), i = 1, 2, . . . , 8, equal to

0.0458142, 0.0336512, 0.0274789, 0.0192752,

0.0101391, 0.0070958, 0.0062373, 0.0053088.
(34)

We have to find values of α, V , and BG for which the functional dependency
of the form (31) best fits the experimental data (32)–(34). Due to the small
number of the measurements in the sample, using the statistical methods based
on the theory of probability is unfounded and inadequate for this problem.

In the problem statement, the parameters α, V , and BG from the function
(31) are not completely equivalent to each other. The main quantities that
interest electrochemists are α and, to a smaller extent, BG. It can be said that
BG plays the role of an auxiliary background constant that reflects individual
specificity of the experiments. Its value is necessary to bound a part of the
domain of function (31) at which the functional dependency really takes place,
i. e., in essense, to estimate the maximal argument for which the experiments
should be performed. For larger arguments of function (31), we get to that part
of its domain where the function values are too small and do not have physical
meaning.
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Relying on the above understanding of the problem, electrochemists intro-
duce “compensated conductivity” S̃(y) obtained by subtracting the background
value BG from the measurement data:

S̃(y) = S(y)−BG.

In its turn, the compensated conductivity produces a “compensated sample” S̃
of the measurements of S(y) defined as

S̃i = Si −BG, i = 1, 2, . . . , 8.

Then the functional dependency (31) has a simpler form

S̃(y) = V exp(αy), (35)

which, after taking natural logarithm, becomes linear with respect to the input
variable:

ln S̃(y) = lnV + αy. (36)

Physical and chemical reasons dictate such a value of the background component
BG that the functional dependency (35)–(36) is satisfied “most accurately” for
the data (32)–(34).

The independent variable y is assumed to be known exactly in the experi-
ments under study, while the measurements Si are subject to errors about which
we only know that their upper bound is a certain value E. Therefore, instead
of (34), we really have a family of intervals

Si = [Si − E,Si + E], i = 1, 2, . . . , 8, (37)

with the midpoints from (34) and radii E, to which the true values of the
conductivity belong. These intervals will be called measurement uncertainty
intervals. Taking into account the capability of the measuring devices and the
experimental conditions, the value E = 0.002 has been assigned as a safe upper
bound on the measurement error in [10], although the actual error is, as a rule,
much smaller. De facto, after the background component BG is fixed, we have
to process the interval compensated sample

S̃i = [S̃i − E, S̃ + E], i = 1, 2, . . . , 8, (38)

from which α and V are to be determined.

Due to the physical meaning of the problem, the conductivity S(y) cannot
be negative or even zero. That imposes natural constraints on the value of the
background component BG and actual error margin E, i. e., on the radius of
the measurement uncertatinty intervals. If a measurement uncertatinty interval
contains negative values, it is senseless, and the corresponding interval should
be somehow corrected.
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The ideas behind our solution. The above problem is a data fitting prob-
lem with a nonlinear functional dependency. Hence, we cannot avail ourselves
directly of the results on straight line fitting from Sections 4–5. A natural idea
is to reformulate the Maximum Compatibility Method of Section 5 in an equiv-
alent manner that would be applicable to our nonlinear situation. Our solution
of the problem is, in essense, based on the ideas first stated in [21, 37, 38] and
then developed in the works [27, 28, 29, 32].

Figure 9: Inflating the uncertainty boxes inevitably results
in compatibility of the parameters and data.

Notice that the specific form of the expressions that determine the recogniz-
ing functionals Uni and Uss allows us to easily predict how their values change
after varying the matrix A and right-hand side b of the interval linear algebraic
systems Ax = b. In both expressions

min
1≤i≤m

 rad bi −

〈
mid bi −

n∑
j=1

aij xj

〉
and

min
1≤i≤m

 rad bi +

n∑
j=1

(radaij) |xj | −

∣∣∣∣∣∣ mid bi −
n∑

j=1

(midaij)xj

∣∣∣∣∣∣
 ,

the quantities rad bi, i = 1, 2, . . . ,m, occur as add-ons in every subexpression
standing under the “min” operation. Therefore, if all rad bi’s simultaneously in-
crease or decrease by equal values, then the general minima increase or decrease
by the same value.

Uniform increase of the radii of the right-hand sides bi by C, C ≥ 0, is

equivalent to adding the vector Ce to b, where e =
(
[−1, 1], . . . , [−1, 1]

)>
.
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Hence, for the interval system Ax = b + Ce with the widened right-hand side,
there holds

Uni (x,A, b + Ce) = Uni (x,A, b) + C,

Uss (x,A, b + Ce) = Uss (x,A, b) + C,

and, as a consequence,

max
x∈Rn

Uni (x,A, b + Ce) = max
x∈Rn

Uni (x,A, b) + C, (39)

max
x∈Rn

Uss (x,A, b + Ce) = max
x∈Rn

Uss (x,A, b) + C. (40)

If the solution set Ξ(A, b) is empty, so that

M = max
x∈Rn

Uni (x,A, b) = max
x∈Rn

Uss (x,A, b) < 0

(since the negative values of the functionals Uni and Uss coinside), then increas-
ing radii of all the right-hand side components by C ≥ |M |makes the solution set
non-empty: then both maxx∈Rn Uni (x,A, b + Ce) and maxx∈Rn Uss (x,A, b +
Ce) become non-negative due to (39)–(40). We can use such information for
correcting, in a necessary sense, the interval linear system, i. e., the input data
for the parameter indentification problem.

On the other hand, a practical interpretation of the Maximum Compatibility
Method follows from (39)–(40): the value of the argument providing negative
max Uni or max Uss is the first point that appears in the solution set after
uniform (with respect to the midpoint) widening of the right-hand side vector.

Yet another interpretation of the maximum compatibility method may be as
follows: the arguments of negative max Uni and max Uss give us parameters of
such a regression line that should be widened in the smallest possible amount
to result in a “regression strip” intersecting all the data boxes (see Fig. 10).

The above properties of the maximum compatibility estimate form a basis
for an approach that may be applied to nonlinear estimation problems. The
main idea is to vary the amount of data uncertainty expressed in terms of the
width of intervals and investigate the compatibility of the resulting sample.
The minimum width of the uncertainty intervals that makes the sample com-
patibile characterizes the ineradicable dispersion of the data with respect to the
parametric function family to be fitted. The estimate of the parameter should
be chosen so that it minimizes such dispersion, which is completely similar to
parameter estimation in probabilistic models.

Our plan of action. Addressing our problem, we note that the samples of
the point measurement data (33)–(34) are usually not compatible with any
of parameter sets of the functional dependencies (31) or (36) in the sense of
definition from Section 3. However, as follows from the theory above, widening
the data uncertainty intervals (33)–(34) will always result in nonempty feasible
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a

b

Figure 10: Regression strip (instead of thin line) as a solution
to data fitting problem under interval uncertainty.

parameter set, while the interval sample obtained gains compatibility with a
parameter set of the model under study. The smallest amount of the uniform
inflation of the uncertatinty intervals with respect to the specified midpoints
required for the sample to become compatible is an objective measure of the
data dispersion within the sample for a given functional dependency. In the
linear case we have studied in Sections 4 and 5, this smallest amount of widening
is equal to the absolute value of the maximum of the recognizing functional. In
the general nonlinear problem we solve in the current section, such a simple
relationship is not valid any more, but the smallest amount of the inflation of
point data (34), in natural scale, necessary for compatibility to be attained, can
be taken, for given parameter values, as a measure of their compatibility with
the data. This way, we implicitly estimate the minimal level of the measurement
errors present in the processed sample.

To inquire into compatibility of the interval compensated sample (38), we
transform, by taking the logarithm, the constructed functional dependency to
the linear form (36). In doing that, we have to compute ln S̃i, i = 1, 2, . . . , 8,
i. e., logarithms of the interval data (38). According to the sense of the problem
under solution, these are intervals of values of logarithms of the numbers from
intervals (38), so that they can be computed easily based on monotonicity of
the logarithm. Further, after taking logarithms, the compatibility of the sam-
ple with respect to the linear dependency (36) is equivalent to compatibility
(solvability) of the interval linear system of equations

Wu = ln S̃, (41)



Reliable Computing 23, 2016 135

in which W is an 8× 2-matrix of the form

W =


1 y1

1 y2

...
...

1 y8

 ,

u = (lnV, α)>, ln S̃ =
(
ln S̃1, . . . , ln S̃8

)>
. The specific form of the matrix W in

the interval linear system (41) is explained by the fact that, in our data fitting
problem, the linear function (36) has a constant term. Finally, to determine
whether system (41) is compatible, we find the unconstrained maximum of the
recognizing functional Uss (W, ln S̃, u) over the variable u and compare it with
zero. As far as the matrix W is point (non-interval), the recognizing functional
Uss is globally concave, and we can use the computer code lintreqr for the
maximization of Uss [12].

Computational technology and results. To describe formally our compu-
tational procedure, we introduce a function Emin(BG) that assigns, to every
value of the background component BG, the smallest radius E of the mea-
surement uncertainty intervals for which the interval compensated sample S̃ is
compatible. Emin(BG) is thus the function producing the data dispersion for
the compensated sample with the background BG. Therefore, our problem can
be solved by minimizing Emin(BG) over BG from its domain, i. e., from the set
of its meaningful values.

It follows from the above paragraph that the value of the function Emin(BG)
is nothing but a (unique) root of the equation

max
u∈R2

Uss
(
W, ln(S̃ + θe), u

)
= 0 (42)

with respect to the real unknown variable θ. The matrix W and the vector u
have been defined earlier, e = ([−1, 1], . . . , [−1, 1])>, and the logarithm ln is
applied to the vector (S̃ + θe) in componentwise manner. We solved equation
(42) by the bisection (dichotomy) method, taking [0, 2E] = [0, 0.004] as the
initial interval on which the root is localized.

The main stage of the solution of our problem is minimization of the function
Emin(BG) over BG ∈ [0, 0.005]. Algorithmically, it can be organized as the
one-dimensional direct search, for instance, using “golden section” search or
any other analogous approach (see [1] and the other textbooks on numerical
optimization). We got that, for the background variable BG = 0.003757, the
smallest radius of the intervals of the compensated sample S̃ which is necessary
for its compatibility is E∗min = 0.0006197, being minimal among all Emin for
any other values of the background variable BG. Then α∗ = −5945.7, and
lnV ∗ = 11.597, so that the sought-for functional dependency (31), constructed
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in accordance to our “smallest data dispersion” criterion, has the form

S(y) = e11.597 exp(−5945.7 y) + 0.003757

= 108786 · exp(−5945.7 y) + 0.003757.

7 Remaining Open Problems

To conclude, we formulate some open questions whose answers would be further
advances in non-probabilistic statistics and interval data analysis techniques.

What are the asymptotic properties of the maximum compatibility
estimates? In the probabilistic situation, when we use traditional statistical
procedures, it is well-known that, under certain reasonable conditions, the re-
sulting estimates tend to the actual values of the corresponding quantities as the
number of measurements increases. Moreover, we can also estimate the rate at
which the estimates tend to the actual values. Intuitively, it looks like a similar
asymptotic property should hold for interval methods as well.

This is definitely true in the simplest case when we only have one scalar
parameter p = p1, and the measured quantity y does not depend on the quan-
tities xi at all, i. e., f(x, p) = p1. Then each measurement result has the
form y(i) = p + ∆y(i), i = 1, 2, . . . ,m, where measurement errors ∆y(i) are
independent implementations of a probability distribution located on the in-
terval [−∆,∆]. Consequently, the actual value p is located in every interval[
y(i) −∆, y(i) + ∆

]
, i = 1, 2, . . . ,m. After m measurements, we can thus con-

clude that p is contained in the intersection of the corresponding m intervals,
i. e., in the interval

m⋂
i=1

[
y(i) −∆, y(i) + ∆

]
=

[ (
max

1≤i≤m
y(i)
)
−∆,

(
min

1≤i≤m
y(i)
)

+ ∆

]
(43)

= p+
[

max
1≤i≤m

∆y(i) −∆, min
1≤i≤m

∆y(i) + ∆
]
.

In the non-degenerate case, i. e., unless the error is located with probability 1 in
a proper subinterval of the interval [−∆,∆], it can be proven that the width of
the intersection (43) tends to 0 as m increases [36]. We really get an asymptotic
convergence, and the corresponding error turns out to decrease as O(1/m) (see
details in [36]). Moreover, the convergence obtained is asymptotically faster
than, e. g., in the Gaussian probabilistic case.

Indeed, in the probabilistic case, when the measurement error is normally
distributed with mean zero, standard deviation σ, and variance V = σ2, the
optimal way to estimate the actual value p based on the measurement results
y(1), . . . , y(m) is known to compute the arithmetic average

p̃ =
y(1) + . . .+ y(m)

m
.
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It is easy to compute the standard deviation σp̃ of this arithmetic average.
Namely, the variance Vs of the sum

s
def
= y(1) + . . .+ y(m)

of m independent random variables is equal to the sum of their variances, i. e.,
to Vs = V m = σ2m. Therefore, the standard deviation σs =

√
Vs of this sum is

σ
√
m. When we divide a random variable by a positive constant m, its standard

deviation is divided by the same constant. Thus, for p̃ = s/m, the standard
deviation σp̃ is

σp̃ =
σs
m

=
σ
√
m

m
=

σ√
m
.

Hence, for the Gaussian probabilistic uncertainty, the inaccuracy of the resulting
estimate decreases as O(1/

√
m), which is much slower than O(1/m) for interval

uncertainty [36].
It is desirable to extend the result on asymptotic convergence from [36] to

a general case, in which there can be several parameters pj , the functional
dependency f(x, p) is not so simple, and the values x(i) can change from one
measurement to another.

What if we have partial information about the probabilities? In this
paper, we consider only two extreme situations: the probabilistic situation when
we know the probability distributions of all the measurement errors, and the
interval situation, in which the only information that we have about the mea-
surement error is the upper bound on its absolute value.

In practice, in addition to the upper bound, we often have some partial in-
formation about the probability distribution of the measurement error too; see,
e. g., [17]. For example, we may have bounds on some moments of this distri-
bution, or we may know bounds on the values of the corresponding cumulative
distribution function, etc. In such situations, we can also apply the maximum
entropy approach to specify the shape of the probability distribution (as in Sec-
tion 2), but now, when we have additional information about the distribution,
this method may lead to non-uniform distributions, as distinct from the conclu-
sion (11). It is desirable to translate this general idea into efficient techniques
that would thus generalize the Maximum Compatibility Method to the wider
applicability scope.

In this case, we can raise a similar question about the asymptotic properties
of the resulting estimates.
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