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Abstract

In many real-life situations, we need to select an alternative from a set
of possible alternatives. In many such situations, we have a well-defined
objective function u(a) that describes our preferences. If we know the
exact value of u(a) for each alternative a, then we select the alternative
with the largest value of u(a). In practice, however, we usually know the
consequences of each decision a only with some uncertainty. As a result,
for each alternative a, instead of the exact utility value u(a), we only
know the interval of possible values [u(a), u(a)]. In this paper, we show
that the resulting problem of decision making under interval uncertainty
is a natural example of a quandle, i.e., of a general class of operations
introduced in knot theory.
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1 Need for Decision Making under Interval Un-
certainty

Need for decision making. In many real-life situations, we need to select an alter-
native a from the list of possible alternatives – e.g., we want to select a design and/or
location of a plant, a financial investment, etc.

In many such situations, we have a well-defined objective function u(a) that de-
scribes our preferences. If we know the exact value of u(a) for each alternative a, then
we select the alternative with the largest value of u(a).

Decision making under interval uncertainty. In practice, we usually only know
the consequences of each decision with some uncertainty. Often, the only information
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that we have about the corresponding values of u(a) is that it is somewhere between
the known bounds u(a) and u(a), i.e., that u(a) ∈ [u(a), u(a)].

How can we make a decision under such interval uncertainty?

To make a decision under interval uncertainty, we need to select a value
from the interval. To make a decision under interval uncertainty, we need, in
particular, to be able to compare:

• the alternative a for which we only know the interval of possible values of the
objective function u(a),

• with alternatives b for which we know the exact utility values u(b).

For some values u(b), the alternative b is better; for others, a is better. Clearly, if a is
better than b and u(b) > u(c), then a should be better than c as well. Similarly, if a
is worse than b and u(b) < u(c), then a should be worse than c as well. Thus, there
should be a threshold value u0 that separates alternatives b for which a is better from
alternatives b′ for which a is better.

In other words, when we make decisions, we compare u(b) with this threshold value
u0. This value u0 thus represents the equivalent utility of the alternative for which we
only know the interval [u(a), u(a)].

We therefore need to be able, given an interval [u(a), u(a)], to produce an equivalent
utility value u0. In the following text, we will denote this value u0 by u(a) B u(a).

Main problem: which operation B should we select?

2 Natural Properties of the Corresponding Op-
eration B

In order to answer the above questions, let us analyze what are the natural properties
of the operation aB b.

Case of a degenerate interval. First, if we know the exact value of u(a), i.e.,
if the corresponding interval has the form [x, x] for some x, then the corresponding
equivalent value is simply equal to x:

xB x = x (1).

Monotonicity. Another reasonable property is monotonicity: if x < x′, then

xB y < x′ B y.

Continuity. Small changes in x and y should lead to small changes in the equivalent
value xB y. In other words, the operation B should be continuous.

Case of twin interval uncertainty. In practice, instead of knowing the exact
bounds u(a) and u(a) on u(a), we may only know the bounds on each of these bounds:
e.g., we know that u(a) ∈ [u−(a), u+(a)] and u(a) ∈ [u−(a), u+(a)]. Such a situation
is known as twin interval uncertainty; see, e.g., [4, 10].
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For example, we may know the lower bound z of the corresponding interval, but
we do not know its upper bound: we only know that this upper bound is between y
and x. We can analyze this situations in two different ways.

First, we can say that since all we know about the upper bound is that it is between
y and x, this upper bound is therefore equivalent to the value yBx. Now, after we have
thus reduced the uncertain upper bound to a single number, the original information
becomes simply an interval with an exact lower bound z and an exact upper bound
x B y. We can now apply the operation B to estimate the equivalent value of this
interval as (xB y) B z.

There is also an alternative approach. For each possible value v between y and x,
we have an interval [z, v] with equivalent value vBz. Due to the natural monotonicity,
this equivalent value is the smallest when v is the smallest, i.e., when v = y, and
it is the largest when v is the largest, i.e., when v = x. Thus, possible equivalent
values form an interval [y B z, xB z]. The equivalent value of this interval is therefore
(xB z) B (y B z).

It is reasonable to require that these two approaches lead to the same value, i.e.,
that

(xB y) B z = (xB z) B (y B z) (2)

Similarly, we can consider situations in which we know the upper bound x of the
corresponding interval, but we do not know its lower bound: we only know the lower
bound is between y and z. In this case, a similar analysis leads to the requirement
that

xB (y B z) = (xB y) B (xB z). (3)

Bounds. If we know that u is in the interval [u, u], this means that u is not worse
than u. Thus, we should have u0 ≥ u.

Similarly, from the fact that u ≤ u, we conclude that u0 ≤ u. Thus, in general, we
should have xB y ∈ [y, x].

This is a quandle. Interestingly, the above three natural properties (1)-(3) (plus
an appropriately formulated monotonicity) are well known in knot theory: sets with
operations satisfying these properties are knows as quandles; see, e.g., [3, 9].

Let us use this relation to describe possible operations B for decision making under
interval uncertainty.

3 Main Result

Discussion. In general, the operation B is monotonically increasing with respect
to each of its variables. For differentiable functions, this implies that both partial
derivatives are non-negative. Our result, however, requires a stronger condition: that
both derivatives are always positive.

We also need to require not only that x B y ∈ [y, x], but also that x B y ∈ (y, x)
for y < x, i.e., that the degenerate cases xB y = x and xB y = y are excluded.

Under these conditions, we prove the following result.

Definition 1. We say that a differentiable function f(x1, . . . , xm) is strongly increas-
ing if all its partial derivatives are positive.
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Proposition 1. Let xBy be a continuously differentiable strongly increasing function
defined for all x ≥ y which satisfies (1), satisfies (2) or (3), and for which xBy ∈ (y, x)
when y < x. Then,

xB y = f−1(α · f(x) + (1− α) · f(y)) (4)

for some continuous strictly increasing function f(x) and for some α ∈ (0, 1).

Proof. The proof is, in effect, the same as the proof given in Section 7.2.4 Part C of
[1] for a similar result in the case when the operation x B y is defined for all possible
pairs of real numbers (x, y).

Discussion. In other words, after an appropriate monotonic re-scaling

x→ X = f(x),

we get

X B Y = α ·X + (1− α) · Y.

This way of making decisions under interval uncertainty is well known: it has
been originally proposed by the Nobelist Leo Hurwicz and is thus known as Hurwicz’s
optimism-pessimism criterion; see, e.g., [5, 7, 8, 11]. This criterion makes intuitive
sense: it means that to make a decision, we consider, with different weights, the best-
case outcome X and the worst-case outcome Y .

Our result provides a new justification for Hurwicz’s criterion, with one important
exception: by requiring that x B y ∈ (y, x) when y < x, we exclude the following two
extreme cases:

• the super-optimistic case α = 1, when the decision maker only takes into account
the best-case situation; and

• the super-pessimistic case α = 0, when the decision maker only takes into ac-
count the worst-case situation.

Comment. So what is novel in our paper? The mathematical result is somewhat novel,
but it is a minor modification of the known mathematical result.

Our main novel contribution is to show that, by applying this (practically) known
mathematical result to the problem of decision making under interval uncertainty, we
get a new justification of Hurwicz’s criterion – a semi-heuristic criterion used in such
decision making problems.

Remaining open questions. What if we only require that x B y ∈ [y, x]? What if
we only require monotonicity – and allow zero values of the derivatives? What if we
only require continuity instead of differentiability?

4 What If We Also Allow Improper Intervals?

Need for improper intervals. In interval uncertainty, in addition to usual intervals
[a, b] with a ≤ b, it is sometimes useful to consider improper intervals [a, b], with a > b.

The need for such improper intervals comes, e.g., from the following situation. Let
us consider the case when a decision maker is participating in two different situations.
In the first situation, the decision maker gains some amount u, about which we only
know that u ∈ [u, u] for some bounds u and u. In the second situation, the decision
maker gains some amount v about which we only know that v ∈ [v, v] for some bounds
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v and v. As a result of both situations, the possible values of the amount u+ v gained
by the decision maker form an interval [u+ v, v + v].

Suppose now that after different decision makers participates in the first situations
and gain some amount u ∈ [u, u], we want to compensate them so that at the end,
each of them will gain the exact overall amount u + u (which is equal to double the
average gain). How can we describe the corresponding compensation v?

We do not know beforehand the value of this compensation v, it depends on how
much the decision maker will gain in the first situation. Depending on the main, the
corresponding compensation can range:

• from the smallest possible value v = u – which corresponds to the case when
the decision maker’s gain in the first situation was the largest u = u

• to the largest possible value v = u – which corresponds to the case when the
decision maker’s gain in the first situation was the smallest u = u.

So, at first glance, it may seem that the possible values of the compensation v can also
be described by the interval [u, u]. However, this will lead us to the conclusion that
the possible values of overall gain u+ v form the interval [u+ u, u+ u] – and we want
to describe the compensation in which the overall gain is always equal to u+ u.

To avoid this erroneous conclusion, it makes sense to say that the possible values
of the compensation amount v form an improper interval [u, u]; see, e.g., [6, 12]. In
this case, if we apply the above formula to describe possible values of u ∈ [u, u] and
v ∈ [u, u], then for the overall gain u+ v, we get the interval

[u+ u, u+ u],

i.e., we conclude – correctly this time – that the overall compensation is always equal
to u+ u.

Resulting question. It is reasonable to extent the question of selecting an appro-
priate value u0 to such improper intervals as well. In this case, the operation xB y is
defined for all possible pairs of real numbers (x, y).

Results. It turns out that if we allow improper intervals, then we can relax some of
the restrictions that we placed on the operation B in Proposition 1 – but for that, we
need to require that both conditions (2) and (3) are satisfied:

Proposition 2. [2] If a function xB y is continuous, strictly increasing w.r.t. each of
its variables, and satisfies (2) and (3), then

xB y = f−1(α · f(x) + (1− α) · f(y))

for some continuous strictly increasing function f(x) and for some α ∈ (0, 1).

Mathematical comment. In Proposition 2, we assume that both requirements (2) and
(3) are satisfied. What if only one of them is satisfied? It turns out that a similar
result is still true, if we require either differentiability or invertibility of B:

Proposition 3. ([1], Theorem 7.2.5) If a function x B y is differentiable, strictly
increasing w.r.t. each of its variables, and satisfies (2) or (3), then

xB y = f−1(α · f(x) + (1− α) · f(y))

for some differentiable strictly increasing function f(x) and for some α ∈ (0, 1).
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Proposition 4. [13] If a function x B y is continuous, strictly increasing w.r.t. each
of its variables, satisfies (2) or (3), and satisfies the additional property that for every
x and y, there exist z′ and z′′ for which xB z′ = z′′ B x = y, then

xB y = f−1(α · f(x) + (1− α) · f(y))

for some continuous strictly increasing function f(x) and for some α ∈ (0, 1).
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