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Abstract

We are interested in accurate numerical solutions of ill-conditioned
linear systems using floating-point arithmetic. Recently, we proposed a
preconditioning method to reduce the condition numbers of coefficient
matrices. The method utilizes an LU factorization obtained in working
precision arithmetic and requires matrix multiplication in quadruple pre-
cision arithmetic. In this note, we aim to accelerate the preconditioning
method from a practical point of view. For this purpose, we apply a more
efficient method of accurate matrix multiplication based on BLAS in the
preconditioning method. We demonstrate excellent performance of the
BLAS-based preconditioning method by numerical experiments.
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1 Introduction

We consider an accurate numerical solution of a linear system

Ax = b, A ∈ Rn×n, b ∈ Rn (1)

using floating-point arithmetic, where A is a dense matrix. The relative rounding error
unit of floating-point arithmetic is denoted by u. We suppose that IEEE standard 754
binary64 (double precision) is working precision and u = 2−53 ≈ 10−16.

Let κ(A) denote the condition number of A, i.e.,

κ(A) = ‖A‖ · ‖A−1‖,

where ‖ · ‖ denotes the spectral norm. If κ(A) is large as κ(A) > u−1, the problem
becomes ill-conditioned. Then, a numerical solution of (1) tends to be inaccurate. For
example, such ill-conditioned cases arise in inverse problems (cf. e.g. [1]). In this note,
we deal with linear systems such that

κ(A) ≤ (u−1)2 ≈ 1032,

which is solvable range by standard numerical methods in quadruple precision arith-
metic.

There are two standard methods to solve (1) accurately. One is to use an LU fac-
torization in working precision arithmetic with iterative refinement in higher-precision
arithmetic. If given matrices are ill-conditioned, this method cannot work well. The
other is to use an LU factorization in multiple-precision arithmetic, which can work to
solve ill-conditioned linear systems. However, regardless of the condition number of a
given coefficient matrix, the method using multiple-precision arithmetic needs signif-
icant computing time, which is typically more than 100 times as much as computing
time of an LU factorization in working precision arithmetic.

In 1984, Rump [2] showed an interesting algorithm to obtain an approximate in-
verse of an ill-conditioned matrix. This algorithm is based on the multiplicative cor-
rections of an approximate inverse using accurate dot product. Moreover, Rump [3]
presented an algorithm for solving ill-conditioned linear systems. Rump’s idea is as
follows. Let R be an approximate inverse of A. As a preconditioner for A, we multiply
R to the both sides of (1) and obtain

RAx = Rb. (2)

Then, κ(RA) is reduced by a factor u such that

κ(RA) ≈ 1 + uκ(A).

Therefore, (2) becomes more well-conditioned than (1).
With a similar idea to Rump’s method, Ogita [4] presented more efficient precon-

ditioning method using an approximate inverse of an LU factor of A instead of an
approximate inverse of A. Suppose A ≈ LU with κ(A) ≈ κ(L). If we use L−1 as a left
preconditioner, (1) is transformed into

L−1Ax = L−1b.

Then we can reduce κ(A) by a factor u such that

κ(L−1A) ≈ 1 + uκ(A).
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Recently, we developed preconditioning methods [5] based on the method in [4].
The methods can cure the defects of the standard methods for solving linear systems.
In the methods, an accurate dot product algorithm (Dot2) [6] is used for calculating
matrix multiplication. With the methods, we can get an accurate approximate solution
of (1) if κ(A) . κ(u−1)2. The methods require about 30 times as much computing
time of an LU factorization in working precision arithmetic in numerical experiments.

The purpose of this study is to accelerate our previous method [5] significantly.
To do this, we adopt an matrix multiplication algorithm [7, 8] based on BLAS (Basic
Linear Algebra Subprograms) routines instead of Dot2 in the proposed method. The
BLAS-based preconditioning method requires less computational cost than the method
[5] using Dot2. Moreover, the proposed method benefits from high efficiency of BLAS
routines. As a result, the proposed method requires within 10 times as much as
computing time of an LU factorization in working precision arithmetic, which is shown
by numerical experiments.

This note is organized as follows. In Section 2, we briefly explain the precondition-
ing method as our previous work. After that, we introduce an algorithm for accurate
matrix multiplication based on BLAS. Finally, in Section 3, we demonstrate excellent
performance of the proposed method by numerical experiments.

2 Acceleration of the Preconditioning Method

2.1 Preconditioning Method

We explain the preconditioning method in [5] to reduce κ(A), which uses an approx-
imate inverse of an LU factor. We assume that Doolittle’s LU factorization is used
because it is implemented in LAPACK. Let us consider Doolittle’s LU factorization
of AT with partial pivoting such that PAT ≈ LU , where L is a unit lower triangular
matrix. Then

κ(A) ≈ min{κ(U), u−1}

by heuristics (cf. e.g. [11, p.130]). If we adopt

XL ≈ U−T (3)

as a left preconditioner, then

κ(XLA) ≈ 1 + uκ(A).

After the preconditioning, we solve

XLAx = XLb (4)

and obtain an approximate solution x̂ with iterative refinement method.

In practice, we compute C ≈ XLA and d ≈ XLb accurately and obtain a new
linear system

Cx = d. (5)

Then, we expect that C is not ill-conditioned and (5) can be solved accurately using
an LU factorization in working precision arithmetic.

We present an algorithm for accurate solutions of linear systems using the precon-
ditioning method.
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Algorithm 1 (Kobayashi–Ogita [5]) Accurate solutions of linear systems using
the preconditioning method.

Part 1: Standard method to solve Ax = b

Step 1. Execute an LU factorization of AT with partial pivoting by the Doolittle’s
method, so that PAT ≈ LU . Then, solve Ax = b by forward and back-
ward substitutions, i.e., x̂ ≈ PT (L−T (U−T b)), where x̂ is an approximate
solution of Ax = b.

Step 2. Apply the iterative refinement method (cf. e.g. [11, pp.126–127]) to the
approximate solution obtained at Step 1. If the stopping criterion for the
iterations is satisfied, then the algorithm successfully stops. Otherwise, go
to Part 2.

Part 2: Preconditioned method to reduce κ(A)

Step 3. Precondition A to reduce the condition number of A as C := U−TA, where
U is the LU factor obtained at Step 1. Then, solve Cx = d where d :=
U−T b and obtain its approximate solution.

Step 4. Apply the iterative refinement method to the approximate solution.

In our previous work, we adopt an accurate dot product algorithm Dot2 for calcu-
lating C. If we use Dot2, we can calculate a dot product as if computed in quadruple
precision arithmetic. It is shown in [5] that this algorithm works well for the precon-
ditioning method in terms of the accuracy of the results. However, it is not so easy to
implement the algorithm in every computer environment with the optimization level as
good as optimized BLAS routines, such as Intel MKL [9] and OpenBLAS [10]. With
the BLAS-based method [7, 8] of accurate matrix multiplication, we can calculate
matrix products much faster than Dot2 with a naive implementation. Therefore, we
apply the BLAS-based method to calculate C. It is expected to save the computing
time of preconditioning method significantly.

2.2 BLAS-based Method

We briefly review the basic idea of the algorithms [7, 8] for accurate matrix multiplica-
tion based on Level 3 BLAS. For two floating-point matrices A and B with consistent
inner dimension, let us divide A and B into three floating-point matrices each such
that

A = A(1) +A(2) +A(3), B = B(1) +B(2) +B(3).

These transformations are error-free. Each element of A(k) and B(k), k = 1, 2 has
fewer nonzero significand bits fewer than the number of significand bits in working
precision (53 for binary64) so that A(1)B(1), A(1)B(2) and A(2)B(1) can be computed
in working precision arithmetic without roundoff error. Then, the matrix product AB
is expressed as

AB = (A(1) +A(2) +A(3))(B(1) +B(2) +B(3)),

and

AB = A(1)B(1) + ((A(1)B(2) +A(2)B(1)) + (A(1)B(3) +A(2)B(2) +A(3)B)).

Therefore, we can simulate a higher-precision matrix multiplication by calculating six
matrix multiplications in working precision arithmetic with Level 3 BLAS routines,



Reliable Computing 25, 2017 19

Table 1: Computational cost (flops) of the preconditioning method and ratio to LU

Operations requiring O(n3) flops With Dot2 BLAS-based

LU factorization of AT 2
3n

3 2
3n

3

XL := U−T 1
3n

3 1
3n

3

C := XLA
25
2 n3 6n3

LU factorization of C 2
3n

3 2
3n

3

Total cost 85
6 n3 23

3 n3

Ratio to LU 21.25 11.5

Table 2: Computing Environment

CPU Intel Xeon E5-4617 2.9GHz (6 cores × 4 CPUs)
Memory 1TB
Software MATLAB R2015b
MEX Compiler Intel C++ Compiler version 13.1.1
Working precision IEEE 754 binary64 (u = 2−53 ≈ 10−16)

such as DGEMM and DTRMM. A obvious drawback of this method is that it requires
more working space for storing intermediate results. Although this method does not
necessarily achieve quadruple precision arithmetic, heuristics suggest that it is usually
sufficient in practice.

Table 1 shows the computational cost of the preconditioning method together with
the ratio to the computational cost of an LU factorization. In Table 1, the cost of
calculating C with Dot2 is 25

2
n3 flops (floating-point operations), while the cost of

calculating C with the BLAS-based method is 6n3 flops. Because of this difference,
the total cost of the preconditioning method with the BLAS-based method is less than
that with Dot2.

3 Numerical Experiments

We apply the preconditioning method to some test matrices. Computing environment
is shown in Table 2. We measure computing time and maximum relative errors of
obtained approximate solutions. Let the exact solution be denoted by x∗ = A−1b. We
define the maximum relative error as

max
i

∣∣∣∣x∗i − x̂ix∗i

∣∣∣∣ . (6)

In the preconditioning method, we apply each of Dot2 and the BLAS-based method
for accurate matrix multiplication and compare numerical results. We set ε = 10−9
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Table 3: Maximum Relative Error, n = 5000

cnd A\b (MATLAB) With Dot2 BLAS-based MP (d = 34)

1018 3.7 · 10+00 2.2 · 10−16 2.2 · 10−16 2.2 · 10−16

1024 2.6 · 10+01 2.2 · 10−16 2.2 · 10−16 2.3 · 10−11

1030 2.7 · 10+01 4.6 · 10−14 4.6 · 10−14 1.1 · 10−05

1032 3.4 · 10+01 failed failed 1.4 · 10−04

for iterative refinement of approximate solutions x̂(k) so that

|x̂(k+1)
i − x̂(k)i | ≤ ε|x̂

(k+1)
i | for all i.

To calculate (3), we apply the LAPACK routine DTRTRI using MEX function of MAT-
LAB for better performance. The MEX function can call the functions written in
C on MATLAB. Moreover, we implement matrix multiplication with Dot2 in C with
parallel computations by OpenMP and use MEX function.

For comparison, we also solve (1) with Advanpix Multiprecision Computing Tool-
box version 3.8.5.9059 [13]. The toolbox uses GMP (GNU Multiple Prescision Arith-
metic Library) [14] and the MPFR (Multiple Precision Floating-Point Reliable Li-
brary) [15] as fast and reliable multiple-precision arithmetic libraries. In particular,
this toolbox becomes very fast if the number of computational digits d is set as d = 34,
which is compliant with IEEE 754 binary128 (quadruple precision) arithmetic. We
adopt this setting. We do not apply iterative refinement in this case.

As test matrices, we generate a variant of Rump’s matrix randmat [16], which is
explained in [5] in detail. Using randmat, we can generate a random matrix with
specified matrix size and the condition number. A right-hand side vector b is set as
b := Ae where e = (1, 1, . . . , 1)T .

First, we show the maximum relative errors (6) of approximate solutions obtained
by both of the preconditioning methods with Dot2 and the BLAS-based method. We
also show the results of the standard method to solve Ax = b with an LU factorization
in multiple precision arithmetic. To estimate the maximum relative errors, we solve
the linear systems in sufficiently long precision arithmetic and regard the results as
the exact solutions. Numerical results are shown in Tables 6, 7 and 8 for n = 5000,
n = 10000 and n = 20000, respectively. As can be seen, both of the preconditioning
methods with Dot2 and the BLAS-based method work well for cnd ≤ 1030. In the case
of cnd = 1032, the preconditioning method fails because the generated matrix is too
ill-conditioned and it is not sufficient for the preconditioning to reduce the condition
number.

Next, we compare computing times of the above methods. The results are shown
in Tables 6, 7 and 8 for n = 5000, n = 10000 and n = 20000, respectively. The
meanings of the items in the tables are as follows.

• cnd: Specified condition number of A (κ(A) ≈ cnd)

• TLU: Computing time for an LU factorization of AT in binary64 arithmetic

• Ttotal: Total computing time for the preconditioning method

• k1: The number of iterations for iterative refinement in Part 1 of Algorithm 1
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Table 4: Maximum relative error, n = 10000

cnd A\b (MATLAB) With Dot2 BLAS-based MP (d = 34)

1018 5.6 · 10−01 2.2 · 10−16 2.2 · 10−16 2.2 · 10−16

1024 2.6 · 10+01 2.2 · 10−16 2.2 · 10−16 3.1 · 10−11

1030 2.7 · 10+01 1.4 · 10−14 1.4 · 10−14 7.3 · 10−07

1032 3.4 · 10+01 failed failed 5.3 · 10−04

Table 5: Maximum relative error, n = 20000

cnd A\b (MATLAB) With Dot2 BLAS-based MP (d = 34)

1018 2.0 · 10+00 2.2 · 10−16 2.2 · 10−16 2.2 · 10−16

1024 5.3 · 10+01 2.2 · 10−16 2.2 · 10−16 7.3 · 10−12

1030 1.2 · 10+02 2.0 · 10−13 2.0 · 10−13 7.5 · 10−06

1032 1.9 · 10+01 failed failed 1.4 · 10−03

• k2: The number of iterations for iterative refinement in Part 2 of Algorithm 1

• RLU: Ratio of Ttotal to TLU

• TMP: Total computing time to solve Ax = b with the multiple-precision toolbox
with d = 34 (compliant with IEEE 754 binary128)

As can be seen from the tables, the preconditioning method with the BLAS-based
method is much faster than that with Dot2 in all cases. It is remarkable that the
preconditioning method with the BLAS-based method requires less than 10 times
as much as computing time of an LU factorization in working precision arithmetic,
while the multiple-precision approach requires more than 100 times as much as that.
Therefore, it turns out that the preconditioning method, especially with the BLAS-
based method, is very effective.

Table 6: Computing time (sec.) and ratio, n = 5000

With Dot2 BLAS-based MP (d = 34)
cnd TLU Ttotal k1 k2 RLU Ttotal k1 k2 RLU TMP

1018 1.0 20.0 1 1 20.0 6.8 1 1 6.8 128.3
1024 1.0 22.9 2 2 22.9 6.8 2 2 6.8 129.6
1030 1.0 23.7 1 5 23.7 6.9 1 5 6.9 129.0

In conclusion, if we use the BLAS-based method instead of Dot2 to achieve accurate
matrix multiplication, we can save much computing time due to high efficiency of
BLAS routines, although the BLAS-based method requires more working space than
the method with Dot2. Numerical results demonstrate that applying the BLAS-based
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Table 7: Computing time (sec.) and ratio, n = 10000

With Dot2 BLAS-based MP (d = 34)
cnd TLU Ttotal k1 k2 RLU Ttotal k1 k2 RLU TMP

1018 5.4 148.3 1 2 27.5 42.5 1 1 7.9 923.0
1024 5.4 148.1 1 2 27.4 42.7 1 2 7.9 927.5
1030 5.4 148.9 2 4 27.6 43.6 2 4 8.1 924.9

Table 8: Computing time (sec.) and ratio, n = 20000

With Dot2 BLAS-based MP (d = 34)
cnd TLU Ttotal k1 k2 RLU Ttotal k1 k2 RLU TMP

1018 36.7 1192.2 1 2 32.5 291.8 1 1 8.0 7078.4
1024 36.7 1192.7 1 2 32.5 291.4 1 2 7.9 7060.8
1030 36.7 1196.8 2 3 32.6 291.7 2 3 7.9 7092.1

method to the preconditioning method is greatly effective regarding the acceleration
of the preconditioning method.
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