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Abstract

We provide an accurate verification method for solutions of heat equa-
tions with a superlinear nonlinearity. The verification method numerically
proves the existence and local uniqueness of the exact solution in a neigh-
borhood of a numerically computed approximate solution. Our method
is based on a fixed-point formulation using the evolution operator, an it-
erative numerical verification scheme to extend a time interval in which
the validity of the solution can be verified, and rearranged error estimates
for avoiding the propagation of an overestimate. As a result, compared
with the previous verification method using the analytic semigroup, our
method can enclose the solution for a longer time. Some numerical exam-
ples are presented to illustrate the efficiency of our verification method.
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1 Introduction

In this paper, we provide an accurate verification method for solutions of the following
semilinear heat equations for J := (t0, t1] ⊂ R (0 ≤ t0 < t1 <∞) and Ω = (0, 1)d ⊂ Rd
(d = 1, 2, 3): 

∂tu−∆u = up in J × Ω,
u(t, x) = 0, t ∈ J, x ∈ ∂Ω,
u(t0, x) = u0(x), x ∈ Ω,

(1)

where ∂t = ∂
∂t

, ∆ = ∂2

∂x21
+ · · · + ∂d

∂x2
d

, D(∆) = H2(Ω) ∩ H1
0 (Ω), and u0 ∈ L2(Ω) is a

given initial function. We also require that the exponent p satisfies 1 < p < 1 + 4
d
.

The semilinear heat equation (1) appears as a canonical nonlinear extension of
the heat equation with a monomial nonlinearity. In mathematical physics, many
models involve nonlinear variants of (1). For example, solutions of the semilinear heat
equation represent the heat distribution inside a solid fuel container [2]. The blow-up
of a solution indicates the ignition phenomenon of the solid fuel, an application of the
semilinear heat equation to combustion theory.

Since the semilinear heat equation (1) is typical of nonlinear parabolic partial
differential equations, there are numerous analytic results for (1). For example, in [14],
the solution of (1) exists globally in time for small initial data. In [4], the solution to
the integral equation

u(t) = e(t−t0)∆u0 +

∫ t

t0

e(t−s)∆u(s)p ds

is called the mild solution1 of (1). Such a mild solution is the solution of (1) in the
class C (J ;Lq(Ω)), whose definition will be given later2, if q > qc and q ≥ p (resp.
q = qc and q > p) hold for qc = d(p − 1)/2. Furthermore, there exists T > t0, which
depends on u0, such that the mild solution is a unique solution of (1) in the class
C ([t0, T );Lq(Ω)). A variety of analytical studies (e.g., [6, 27] and references therein)
give qualitative properties of the solution. On the other hand, quantitative properties
are difficult to obtain by analytic methods alone. That is, it is difficult to show how
much initial data is small enough for global existence and to determine the explicit
value of T for the mild solution to be unique solution of (1).

One might use numerical computations to understand quantitative properties. The
numerical analysis of (1) has also been studied for parabolic equations (cf. [11, 32]).
However, even if numerically computed results seem to converge to the zero function
that is one of the steady states of (1), the results of numerical computations do not
prove whether these computed solutions are rigorous global solutions. Therefore, ver-
ified computing for the solution of (1) would be helpful to obtain rigorous results with
quantitative properties.

Verification methods for parabolic partial differential equations ([16, 20, 21, 23, 24],
etc.) give mathematical proof of the existence and local uniqueness of the exact
solution in a neighborhood of a numerically computed approximate solution. In such
a framework, we try to enclose the solution rigorously in a Banach space X. Namely,
let Y be a Banach space with respect to the space variable. Under the assumption that

1The family of operators
{
et∆

}
t≥0

denotes the analytic semigroup generated by ∆. For

the development of semigroup theory, see [26, 33].
2We note that all notation including function spaces used throughout this paper will be

given in the last part of Section 1.
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the approximate solution ω satisfies ‖u0−ω(t0)‖Y ≤ ε0 at t = t0, we rigorously obtain
the enclosure BJ (ω, ρε0) = {u ∈ X : ‖u− ω‖X ≤ ρε0} of the exact solution. The
pioneering work of such a verification method has been studied by M. T. Nakao, T.
Kinoshita, and T. Kimura [16, 23, 24] under the setting of the following Banach spaces:
X = L2

(
J ;H1

0 (Ω)
)

and Y = H1
0 (Ω). They only consider the case when the initial

function is always the zero function, i.e., u0 ≡ 0. The objective of their work is to derive
the norm estimate of the inverse operator of linearized parabolic differential operators.
Subsequently, we have proposed another verification method [20, 21] based on the
analytic semigroup generated by ∆. This framework gives the enclosure of the mild
solution under the setting of Banach spaces: X = L∞

(
J ;H1

0 (Ω)
)

and Y = H1
0 (Ω).

Here, the initial function u0 is any function in H1
0 (Ω). In addition, we have introduced

a recursive scheme for enclosing the mild solution in several time intervals. By using
this scheme, we can extend a time interval in which the validity of the solution is
verified.

Another recent approach of the verification methods for parabolic partial differ-
ential equations has been developed from the viewpoint of dynamical systems. For
example, in [12, 35, 36], the existence of periodic orbits of the Kuramoto-Sivashinsky
equation has been proved by making good use of the spectral method. Besides that,
there is a framework on the verification of invariant objects of parabolic partial dif-
ferential equations [10]. To understand structures of dynamical systems, it is natural
to require rigorously tracking trajectories of initial value problems of parabolic partial
differential equations for long time. However, there are few studies concerning tracking
trajectories of the initial value problems in the field of dynamical systems.

Considering the above background, the goal of this paper is to provide an accurate
verification method for parabolic partial differential equations under the setting of the
Banach spacesX = C(J ;D(∆α

µ)) and Y = L2(Ω), where ∆α
µ denotes a fractional power

of the shifted positive operator defined in Definition 2.1. Our framework admits non-
zero initial functions satisfying u0 ∈ L2(Ω). Here, the accurate verification method
refers to a verification method that succeeds in enclosing the exact solution for a
long time. In verified computing of solutions to time evolution equations, when we
require the enclosure of the solution for a long time, over-estimates accumulate and
prevent us from succeeding in the verification (e.g., see [21]). In particular, for ordinary
differential equations, the propagation of over-estimation is called the wrapping effect
(e.g., see [3, 15, 18, 25, 34] and references therein.). The main contribution of this
paper is that a more accurate result than the previous result [21] is obtained for
enclosing the mild solution of (1). The results are shown numerically in Section 5.
There are two important points that improve the verification method. One is the
fixed-point formulation using the evolution operator, which is introduced in Section
2.1, instead of the analytic semigroup used in [21]. The other is a rearrangement of
the computations for avoiding the propagation of over-estimate by carefully handling
the product appearing in the error estimate.

The rest of this paper is organized as follows: Notations used throughout this pa-
per are listed in the rest of this section. In Section 2, the evolution operator proposed
by H. Tanabe [30] and P. E. Sobolevskii [29] is introduced to transform the initial-
boundary value problem (1) into a fixed-point form. Then, the fixed-point form is
derived so that the existence of its fixed point and the existence of a mild solution
of (1) are equivalent. We also prepare several estimates associated with the evolu-
tion operator. In Section 3, the local inclusion theorem whose sufficient condition
can be checked numerically is presented in Theorem 3.1. Subsequently, in Section
4, we provide an iterative numerical verification scheme based on Theorem 3.1. We



Reliable Computing 25, 2017 77

also introduce a technique for shrinking the propagation of over-estimates based on
techniques for avoiding the wrapping effect in verification methods for ordinary differ-
ential equations. Finally, we numerically demonstrate the efficiency of the provided
verification method in Section 5.

Notation

R : the set of real numbers.

N : the set of natural numbers.

C : the set of complex numbers.

Lq(Ω) : the set of q-th power Lebesgue integrable functions on Ω for q ∈ [1,∞) with
the norm

‖f‖Lq :=

(∫
Ω

|f(x)|q dx
)1/q

.

L∞(Ω) : the set of essentially bounded functions on Ω with the norm

‖f‖L∞ := ess sup
x∈Ω

|f(x)|.

(ϕ,ψ)L2 : the inner product of L2(Ω) defined by

(ϕ,ψ)L2 :=

∫
Ω

ϕ(x)ψ(x) dx.

‖S‖Lq,Lr : the operator norm of S : Lq(Ω)→ Lr(Ω) (1 ≤ q, r ≤ ∞) defined by

‖S‖Lq,Lr := sup
0 6=ϕ∈Lq(Ω)

‖Sϕ‖Lr
‖ϕ‖Lq

.

Hm(Ω) : the m-th order Sobolev space of L2(Ω).

H1
0 (Ω) : the subspace of H1(Ω) defined by {ϕ ∈ H1(Ω) : ϕ = 0 on ∂Ω}, where ϕ =

0 on ∂Ω is meant in the trace sense. The norm of H1
0 (Ω) is defined by

‖ϕ‖H1
0

:=
(
‖∇ϕ‖2L2 + µ‖ϕ‖2L2

)1/2
for ϕ ∈ H1

0 (Ω) and a certain µ > 0.

Lq (J ;Y ) : the time-dependent Lebesgue space as a space of Y -valued functions on J with
the norm

‖u‖Lq(J;Y ) :=


(∫

J

‖u(t, ·)‖qY dt
)1/q

, 1 ≤ q <∞,

ess sup
t∈J

‖u(t, ·)‖Y , q =∞.

C (J ;Y ) : the time-dependent space as a space of bounded Y -valued functions on J with
the norm

‖u‖C(J;Y ) := sup
t∈J
‖u(t, ·)‖Y .



78 Takayasu et al., Accurate Verification Method for Semilinear Heat Equations

2 Evolution Operator

2.1 Fixed-point Formulations

For a fixed µ > 0, let ∆µ := −∆ + µ. As the inverse of the operator ∆µ is a compact
self-adjoint operator, the spectral theorem [7] shows that the operator ∆µ has a positive
discrete spectrum. Let λA := λmin + µ be the minimal eigenvalue of ∆µ, where λmin

denotes the minimal eigenvalue of −∆. We set σ > 0 satisfying

σ − pω(t, x)p−1 ≥ µ, t ∈ J, a.e. x ∈ Ω,

where ω(t, x) is a numerically computed approximate solution of (1). For t ∈ J , let
A(t) := −∆ +

(
σ − pω(t)p−1

)
, where ω(t) ≡ ω(t, ·). The domain of the operator A(t),

denoted by D(A(t)), is equal to D(∆), and there exists M > 0 such that

|(A(t)ϕ,ψ)L2 | =
∣∣(∇ϕ,∇ψ)L2 +

(
σ − pω(t)p−1)ϕ,ψ

)
L2

∣∣
=

∣∣(∇ϕ,∇ψ)L2 + µ(ϕ,ψ)L2 +
(
(σ − pω(t)p−1 − µ)ϕ,ψ

)
L2

∣∣
≤ M‖ϕ‖H1

0
‖ψ‖H1

0

for ϕ ∈ D(A(t)) and ψ ∈ H1
0 (Ω). It also follows that for ϕ ∈ D(A(t)),

(A(t)ϕ,ϕ)L2 = (∇ϕ,∇ϕ)L2 +
(
(σ − pω(t)p−1)ϕ,ϕ

)
L2

≥ (∇ϕ,∇ϕ)L2 + µ(ϕ,ϕ)L2 = ‖ϕ‖2H1
0
. (2)

Hence, −A(t) becomes a sectorial operator3 on L2(Ω). It follows [26] that −A(t)

generates the analytic semigroup
{
e−sA(t)

}
s≥0

for each t ∈ J . Furthermore, one can

prove that there exists C > 0 such that∥∥(A(t)−A(s))A(s)−1ϕ
∥∥
L2 ≤ C|t− s|‖ϕ‖L2 , ∀ϕ ∈ L2(Ω), t, s ∈ J,

if the approximate solution is a sufficiently smooth with respect to the t-variable. This
is proved from the following facts: From (2) and the embedding H1

0 (Ω) ↪→ L2(Ω), there
exists c > 0 such that ‖A(s)−1ϕ‖L2 ≤ c‖ϕ‖L2 for any ϕ ∈ L2(Ω). For each t, s ∈ J ,
the mean-value theorem and Taylor’s theorem imply∥∥(A(t)−A(s))A(s)−1ϕ

∥∥
L2

= p
∥∥(ω(t)p−1 − ω(s)p−1)A(s)−1ϕ

∥∥
L2

= p(p− 1)

∥∥∥∥∫ 1

0

(θω(t) + (1− θ)ω(s))p−2 dθ (ω(t)− ω(s))A(s)−1ϕ

∥∥∥∥
L2

≤ p(p− 1)

∫ 1

0

∥∥(θω(t) + (1− θ)ω(s))p−2
∥∥
L∞

dθ · ‖∂tω(η)‖L∞ |t− s|
∥∥A(s)−1ϕ

∥∥
L2

≤ C|t− s|‖ϕ‖L2 , ∀ϕ ∈ L2(Ω),

where η ∈ J and

C = cp(p− 1) sup
t,s∈J

∫ 1

0

∥∥(θω(t) + (1− θ)ω(s))p−2
∥∥
L∞

dθ · sup
η∈J
‖∂tω(η)‖L∞ .

3Let X be a Banach space and A : D(A) ⊂ X → X a linear closed operator. If the
resolvent set ρ(A) of A contains a sector S = {λ ∈ C : | arg(λ)| < θ} with θ ∈ (π/2, π), and
there exists M,>, 0 such that ‖λ(λI − A)−1ϕ‖X ≤ M‖ϕ‖X for λ ∈ S and ϕ ∈ X, then A is
called a sectorial operator.
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From these facts, −A(t) generates the evolution operator

{U(t, s)}t0≤s≤t≤t1

on L2(Ω) [26, 29, 30, 33], etc. The evolution operator is the solution operator of the
homogeneous initial value problem{

∂tu+A(t)u = 0, t0 ≤ s < t ≤ t1,
u(s) = ϕ,

(3)

where ϕ ∈ L2(Ω). It gives the formula u(t) = U(t, s)ϕ for representing a solution
of (3). For representing the evolution operator, in the 1960’s, H. Tanabe [30] and
P. E. Sobolevskii [29] independently constructed the evolution operator when the do-
main D(A(t)) is independent of the variable t.

By using the evolution operator {U(t, s)}t0≤s≤t≤t1 generated by −A(t), we define

a nonlinear operator S : C(J ;L2(Ω))→ C(J ;L2(Ω)) as

(S(v))(t) := U(t, t0)v(t0) +

∫ t

t0

U(t, s)g(v(s)) ds, (4)

where

g(v) := e−σ(t−t0)

{(
ω + eσ(t−t0)v

)p
− ωp − pωp−1eσ(t−t0)v + ωp − ∂tω + ∆ω

}
.

Let v := e−σ(t−t0)(u−ω). The main assertion of this paper is that u is a mild solution
of (1) if and only if v is a fixed point of the operator S in an appropriate function
space. In Theorem 3.1, we will give a sufficient condition for guaranteeing the existence
and local uniqueness of such a fixed point, which can be checked numerically.

2.2 Estimates Associated with the Evolution Operator

Lemma 2.1 For 0 ≤ s < t, let {U(t, s)}0≤s<t be an evolution operator generated by
−A(t). If there exists a bound η such that

η ≤ inf
ϕ∈D(∆)

(A(r)ϕ,ϕ)L2

(ϕ,ϕ)L2
, ∀r ∈ [s, t],

then the following estimate holds for 0 ≤ s < t:

‖U(t, s)ϕ‖L2 ≤ e−(t−s)η‖ϕ‖L2 , ∀ϕ ∈ L2(Ω).

Proof: Assume that u(t) is the solution of (3). The energy estimate [8] implies

1

2

d

dt
‖u(t)‖2L2 = (∂tu(t), u(t))L2

= − (A(t)u(t), u(t))L2

≤ −η‖u(t)‖L2 .

From the Gronwall inequality [13], it follows that

‖u(t)‖L2 ≤ e−(t−s)η‖ϕ‖L2 .
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Remark 1 When A(t) = −∆ +
(
σ − pω(t)p−1

)
, η of Lemma 2.1 can be taken as

λA = λmin + µ from (2).

Unless otherwise noted, we fix A(t) = −∆ +
(
σ − pω(t)p−1

)
and ∆µ = −∆ + µ.

We derive a formula of the evolution operator {U(t, s)}t0≤s≤t≤t1 by using the analytic
semigroup generated by −A(s). From (3) we have for any s and t satisfying t0 ≤ s ≤
t ≤ t1,

∂tu+A(t)u = 0 ⇐⇒ ∂tu+A(s)u = −(A(t)−A(s))u.

Since −A(s) generates the analytic semigroup {e−tA(s)}t≥0, we have

u(t) =e−(t−s)A(s)ϕ+

∫ t

s

e−(t−r)A(s){−(A(r)−A(s))u(r)} dr

=e−(t−s)A(s)ϕ+

∫ t

s

e−(t−r)A(s)p
(
ω(r)p−1 − ω(s)p−1)u(r) dr.

That is, the evolution operator satisfies the operator-valued integral equation

U(t, s) = e−(t−s)A(s) +

∫ t

s

e−(t−s)A(s)p
(
ω(r)p−1 − ω(s)p−1)U(r, s) dr. (5)

By using (5) in the following, we define the fractional power of ∆µ and introduce
several estimates associated with the evolution operator.

Definition 2.1 For i ∈ N, let λi > 0 be the eigenvalue of ∆µ. The function ϕi
denotes an eigenfunction of ∆µ corresponding to λi satisfying (ϕi, ϕj)L2 = δij, where
δij is Kronecker’s delta. We describe the eigenvalue decomposition of ϕ ∈ L2(Ω) as
ϕ =

∑∞
i=1 ciϕi, where ci = (ϕ,ϕi)L2 . For α ∈ (0, 1), we define the fractional power of

∆µ as

∆α
µϕ :=

∞∑
i=1

λαi ciϕi, D(∆α
µ) :=

{
ϕ =

∞∑
i=1

ciϕi ∈ L2(Ω) :

∞∑
i=1

c2iλ
2α
i <∞

}
.

Lemma 2.2 For α ∈ (0, 1) and each t ∈ J , it follows that∥∥∆α
µϕ
∥∥
L2 ≤ ‖A(t)αϕ‖L2 , ∀ϕ ∈ D(A(t)).

From (2), it is easy to prove Lemma 2.2.
The next lemma is about the embedding D

(
∆α
µ

)
↪→ Lp(Ω). It has been shown in

several textbooks (e.g., [26]).

Lemma 2.3 Let Ω ⊂ Rd (d ∈ N) be a bounded domain. Let α satisfy α > d(p−2)
4p

for

2 < p ≤ ∞, with α > d
4

in the case p =∞. It holds for any ϕ ∈ D
(
∆α
µ

)
‖ϕ‖Lp ≤ Cp,α‖∆α

µϕ‖L2 , Cp,α :=
Γ
(
α− d(p−2)

4p

)
(4π)

d(p−2)
4p Γ(α)

min
0<β≤1

ζ(β),

where ζ(β) = β
− d(p−2)

4p ((1 − β)λmin + µ)
−
(
α− d(p−2)

4p

)
, λmin is the minimal eigenvalue

of −∆, and Γ denotes the Gamma function

Γ(x) =

∫ ∞
0

tx−1e−t dt, x > 0.
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The proof of Lemma 2.3 is similar to the proof in [19].

Proof: Let {e−t∆µ}t≥0 be the analytic semigroup on L2(Ω) generated by −∆µ. For
β > 0, it is known that

∆−βµ ϕ = Γ(β)−1

∫ ∞
0

tβ−1e−t∆µϕdt (6)

holds [26, 33] for ϕ ∈ L2(Ω). For p, q, r > 0 satisfying 1 ≤ q < p ≤ ∞ and 1
r

= 1
q
− 1

p
,

the following estimate associated with the analytic semigroup {et∆}t≥0 generated by
∆ holds:

‖et∆ϕ‖Lp ≤ (4πt)−
d
2r ‖ϕ‖Lq , ∀ϕ ∈ Lq(Ω), (7)

where we set 1/∞ = 0.

For 2 < p ≤ ∞, α > d(p−2)
4p

, 0 < β ≤ 1, and any ϕ ∈ D
(
∆α
µ

)
, (6) implies

‖ϕ‖Lp = ‖∆−αµ ∆α
µϕ‖Lp

=

∥∥∥∥Γ(α)−1

∫ ∞
0

tα−1e−t∆µ∆α
µϕdt

∥∥∥∥
Lp

≤ Γ(α)−1

∫ ∞
0

tα−1‖e−t∆µ∆α
µϕ‖Lp dt

≤ Γ(α)−1

∫ ∞
0

tα−1‖e−t∆µ‖L2,Lp‖∆
α
µϕ‖L2 dt

= Γ(α)−1

∫ ∞
0

tα−1‖e−βt∆µe−(1−β)t∆µ‖L2,Lp‖∆
α
µϕ‖L2 dt

≤ Γ(α)−1

∫ ∞
0

tα−1‖e−βt∆µ‖L2,Lp‖e
−(1−β)t∆µ‖L2,L2‖∆α

µϕ‖L2 dt,

where we used the semigroup property e−t∆µ = e−βt∆µe−(1−β)t∆µ (e.g., [26]). One

can see that e−t∆µ = e−µtet∆. Setting q = 2 in (7) and d
2r

= d(p−2)
4p

, we have

‖ϕ‖Lp

≤ Γ(α)−1

∫ ∞
0

tα−1(4πβt)
− d(p−2)

4p e−βµte−t(1−β)(λmin+µ)‖∆α
µϕ‖L2 dt

= (4πβ)
− d(p−2)

4p Γ(α)−1

∫ ∞
0

t
α−1− d(p−2)

4p e−t((1−β)λmin+µ) dt ‖∆α
µϕ‖L2

= (4πβ)
− d(p−2)

4p Γ(α)−1

(
1

(1− β)λmin + µ

)α− d(p−2)
4p

Γ

(
α− d(p− 2)

4p

)
‖∆α

µϕ‖L2

=
Γ
(
α− d(p−2)

4p

)
(4π)

d(p−2)
4p Γ(α)

β
− d(p−2)

4p ((1− β)λmin + µ)
−
(
α− d(p−2)

4p

)
‖∆α

µϕ‖L2

for any ϕ ∈ D
(
∆α
µ

)
. Hence, setting ζ(β) = β

− d(p−2)
4p ((1− β)λmin + µ)

−
(
α− d(p−2)

4p

)
,

‖ϕ‖Lp ≤
Γ
(
α− d(p−2)

4p

)
(4π)

d(p−2)
4p Γ(α)

min
0<β≤1

ζ(β)‖∆α
µϕ‖L2 , ∀ϕ ∈ D(∆α

µ).
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Lemma 2.4 For each t ∈ J , let
{
e−sA(t)

}
s≥0

be an analytic semigroup generated by

−A(t). For α ∈ (0, 1) and β ∈ (0, 1], it follows that for any ϕ ∈ L2(Ω)

∥∥∥A(t)αe−sA(t)ϕ
∥∥∥
L2
≤
(
α

eβ

)α
s−αe−s(1−β)λA‖ϕ‖L2 .

Proof: Since all the values from the spectrum of A(t) are positive, the spectral mapping
theorem implies

∥∥∥A(t)αe−sA(t)ϕ
∥∥∥
L2

= sup
x∈σ(A(t))

(
xαe−sx

)
‖ϕ‖L2

≤ sup
x∈σ(A(t))

(
xαe−sβx

)
sup

x∈σ(A(t))

(
e−s(1−β)x

)
‖ϕ‖L2

≤
(
α

eβ

)α
s−αe−s(1−β)λA‖ϕ‖L2 , ∀ϕ ∈ L2(Ω),

where σ(A(t)) denotes the spectrum of A(t), and we used the inequalities

sup
x∈σ(A(t))

(
xαe−sβx

)
≤
(
α

eβ

)α
s−α and sup

x∈σ(A(t))

(
e−s(1−β)x

)
≤ e−s(1−β)λA .

Lemma 2.5 For α ∈ (0, 1), β ∈ (0, 1], s and t ∈ J satisfying s ≤ t, and Cω a constant
satisfying

∥∥p (ω(t)p−1 − ω(s)p−1)ϕ∥∥
L2 ≤ Cω(t− s)‖ϕ‖L2 , ∀ϕ ∈ L2(Ω), (8)

it follows that for any ϕ ∈ L2(Ω),

∥∥∆α
µU(t, s)ϕ

∥∥
L2 ≤

(
α

eβ

)α
(t− s)−αe−(t−s)(1−β)λA

{
1 +

Cω(t− s)2

(1− α)(2− α)

}
‖ϕ‖L2 .

Proof: For α ∈ (0, 1), β ∈ (0, 1], and s and t ∈ J , Lemmas 2.1, 2.2, 2.4, and (8) yield
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for any ϕ ∈ L2(Ω),∥∥∆α
µU(t, s)ϕ

∥∥
L2

≤
∥∥∥∆α

µ e
−(t−s)A(s)ϕ

∥∥∥
L2

+

∫ t

s

∥∥∥∆α
µ e
−(t−r)A(s){−(A(r)−A(s))}U(r, s)ϕ

∥∥∥
L2
dr

≤
∥∥∥A(s)α e−(t−s)A(s)ϕ

∥∥∥
L2

+

∫ t

s

∥∥∥A(s)α e−(t−r)A(s){−(A(r)−A(s))}U(r, s)ϕ
∥∥∥
L2
dr

≤
(
α

eβ

)α
(t− s)−αe−(t−s)(1−β)λA‖ϕ‖L2

+

∫ t

s

(
α

eβ

)α
(t− r)−αe−(t−r)(1−β)λA‖(A(r)−A(s))U(r, s)ϕ‖L2 dr

≤
(
α

eβ

)α
(t− s)−αe−(t−s)(1−β)λA‖ϕ‖L2

+

∫ t

s

(
α

eβ

)α
(t− r)−αe−(t−r)(1−β)λACω(r − s)‖U(r, s)ϕ‖L2 dr

≤
(
α

eβ

)α
(t− s)−αe−(t−s)(1−β)λA‖ϕ‖L2

+

∫ t

s

(
α

eβ

)α
(t− r)−αe−(t−r)(1−β)λACω(r − s)e−(r−s)λA‖ϕ‖L2 dr

=

(
α

eβ

)α
(t− s)−αe−(t−s)(1−β)λA‖ϕ‖L2

+

(
α

eβ

)α
Cω‖ϕ‖L2e−(t−s)(1−β)λA

∫ t

s

(t− r)−α(r − s)e−(r−s)βλA dr

≤
(
α

eβ

)α
(t− s)−αe−(t−s)(1−β)λA‖ϕ‖L2

+

(
α

eβ

)α
Cω‖ϕ‖L2e−(t−s)(1−β)λA(t− s)2−αΓ(1− α)

Γ(3− α)

=

(
α

eβ

)α
(t− s)−αe−(t−s)(1−β)λA

{
1 +

Cω(t− s)2

(1− α)(2− α)

}
‖ϕ‖L2 .

3 Local Inclusion

In this section, we fix the fractional power α in the interval
(
d(p−1)

4p
, 1
p

)
, and we define

a weighted subspace of C(J ;D(∆α
µ)) as

Xα :=

{
u ∈ C(J ;D(∆α

µ)) : sup
t∈J

(t− t0)α‖∆α
µu‖L2 < +∞

}
with the norm ‖u‖Xα := supt∈J(t − t0)α‖∆α

µu‖L2 . Under this norm, Xα becomes a
Banach space4. In addition, we define a neighborhood of ω as

BJ(ω, ρ) :=

{
u ∈ C(J ;D(∆α

µ)) : sup
t∈J

(t− t0)αe−σ(t−t0)‖∆α
µ(u− ω)‖L2 ≤ ρ

}
.

4The norm ‖u‖Xα is equivalent to the graph norm of C(J ;D(∆α
µ)) because of the embed-

ding D(∆α
µ) ↪→ L2(Ω).
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The following theorem gives a sufficient condition for guaranteeing the existence and
local uniqueness of the mild solution of (1) in BJ(ω, ρ).

Theorem 3.1 Let α satisfy α ∈
(
d(p−1)

4p
, 1
p

)
, p ≥ 2, and τ = t1− t0. We assume that

the approximate solution ω satisfies ‖u0 − ω(t0)‖L2 ≤ ε0 and

‖∂tω −∆ω − ωp‖C(J;L2(Ω)) ≤ δ. (9)

If

W (τ)

(
ε0 + Lω(ρ)ρ2 +

δτ

1− α

)
< ρ (10)

holds for ρ > 0, then the mild solution u of (1) exists and is unique in BJ(ω, ρ). Here,
W (τ) and Lω(ρ) are given by

W (τ) =
(α
e

)α{
1 +

Cωτ
2

(1− α)(2− α)

}
and

Lω(ρ) = p(p− 1)C2
2p,αe

στ
(
τα ‖ω‖C(J;L2p(Ω)) + C2p,αe

στρ
)p−2

τ1−pαB(1− α, 1− pα),

respectively. The constant Cω satisfies (8), C2p,α is the embedding constant introduced
in Lemma 2.3, and B(x, y) is the Beta function.

The proof of Theorem 3.1 is based on Banach’s fixed-point theorem using the nonlinear
operator S defined in (4). Before proving the theorem, we prepare a lemma with
respect to the nonlinear term of (1).

Lemma 3.1 Let z1 and z2 inD
(
∆α
µ

)
, and let ω be the approximate solution. For a

fixed t ∈ J and p ≥ 2, it follows that∥∥(ω + z1)p − (ω + z2)p − pωp−1(z1 − z2)
∥∥
L2

≤ p(p− 1)C2
2p,α

∫ 1

0

∫ 1

0

(
‖ω‖L2p + ηC2p,α

∥∥∆α
µ(θz1 + (1− θ)z2)

∥∥
L2

)p−2
dη∥∥∆α

µ(θz1 + (1− θ)z2)
∥∥
L2 dθ

∥∥∆α
µ(z1 − z2)

∥∥
L2 ,

where C2p,α is the embedding constant introduced in Lemma 2.3.

Proof: The mean-value theorem implies that

(ω + z1)p − (ω + z2)p − pωp−1(z1 − z2)

=

∫ 1

0

d

dθ

{
(ω + θz1 + (1− θ)z2)p − θpωp−1(z1 − z2)

}
dθ

= p

∫ 1

0

(
(ω + θz1 + (1− θ)z2)p−1 − ωp−1) dθ (z1 − z2)

= p

∫ 1

0

∫ 1

0

d

dη
(ω + η(θz1 + (1− θ)z2))p−1 dη dθ (z1 − z2)

= p(p− 1)

∫ 1

0

∫ 1

0

(ω + η(θz1 + (1− θ)z2))p−2 dη(θz1 + (1− θ)z2)dθ(z1 − z2).
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From Hölder’s inequality [1], Minkowski’s inequality [1], and Lemma 2.3, we have∥∥(ω + z1)p − (ω + z2)p − pωp−1(z1 − z2)
∥∥
L2

≤ p(p− 1)

∫ 1

0

∫ 1

0

‖ω + η(θz1 + (1− θ)z2)‖p−2

L2p dη

‖θz1 + (1− θ)z2‖L2p dθ ‖z1 − z2‖L2p

≤ p(p− 1)

∫ 1

0

∫ 1

0

(‖ω‖L2p + η‖θz1 + (1− θ)z2‖L2p)p−2 dη

‖θz1 + (1− θ)z2‖L2p dθ ‖z1 − z2‖L2p

≤ p(p− 1)C2
2p,α

∫ 1

0

∫ 1

0

(
‖ω‖L2p + ηC2p,α

∥∥∆α
µ(θz1 + (1− θ)z2)

∥∥
L2

)p−2
dη∥∥∆α

µ(θz1 + (1− θ)z2)
∥∥
L2 dθ

∥∥∆α
µ(z1 − z2)

∥∥
L2 .

Proof: (Theorem 3.1) For ρ > 0, let V := {v ∈ Xα : ‖v‖Xα ≤ ρ}. Consider the non-
linear operator S defined in (4). From Banach’s fixed-point theorem, we derive a
sufficient condition for S to have a fixed point in V . For v ∈ V with a fixed t ∈ J ,∥∥∆α

µS(v(t))
∥∥
L2 ≤

∥∥∆α
µU(t, t0)v(t0)

∥∥
L2 +

∫ t

t0

∥∥∆α
µU(t, s)g(v(s))

∥∥
L2 ds.

Setting v0 = v(t0), we have the following estimate from Lemma 2.5 with β = 1:∥∥∆α
µS(v(t))

∥∥
L2

≤
∥∥∆α

µU(t, t0)v0

∥∥
L2 +

∫ t

t0

∥∥∆α
µU(t, s)g(v(s))

∥∥
L2 ds

≤(t− t0)−α
(α
e

)α
‖v0‖L2

{
1 +

Cω(t− t0)2

(1− α)(2− α)

}
+

∫ t

t0

(t− s)−α
(α
e

)α
‖g(v(s))‖L2

{
1 +

Cω(t− s)2

(1− α)(2− α)

}
ds

≤(t− t0)−α
(α
e

)α{
1 +

Cω(t− t0)2

(1− α)(2− α)

}
(
‖v0‖L2 + (t− t0)α

∫ t

t0

(t− s)−α‖g(v(s))‖L2 ds

)
. (11)

To estimate g(v(s)) in the last term in (11), we decompose g into two parts, as
g(v(s)) = g1(s) + g2(s), where

g1(s) := e−σ(s−t0)
{(
ω + eσ(s−t0)v

)p
− ωp − pωp−1eσ(s−t0)v

}
,

and
g2(s) := e−σ(s−t0) (ωp − ∂tω + ∆ω) .

Setting z1 = eσ(s−t0)v and z2 = 0 in Lemma 3.1, the estimate of g1(s) is

‖g1(s)‖L2 ≤ p(p− 1)C2
2p,αe

σ(s−t0)
∥∥∆α

µv
∥∥2

L2∫ 1

0

∫ 1

0

(
‖ω‖L2p + θηC2p,αe

σ(s−t0)
∥∥∆α

µv
∥∥
L2

)p−2

dηθ dθ.
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It follows that

(t− t0)α
∫ t

t0

(t− s)−α ‖g1(s)‖L2 ds

≤ (t− t0)α
∫ t

t0

(t− s)−α
{
p(p− 1)C2

2p,αe
σ(s−t0)

∥∥∆α
µv
∥∥2

L2

∫ 1

0

∫ 1

0

(
‖ω‖L2p + θηC2p,αe

σ(s−t0)
∥∥∆α

µv
∥∥
L2

)p−2

dηθ dθ

}
ds

≤ (t− t0)αp(p− 1)C2
2p,αe

σ(t−t0)ρ2∫ 1

0

∫ 1

0

(
(t− t0)α ‖ω‖C(J;L2p(Ω)) + θηC2p,αe

σ(t−t0)ρ
)p−2

dηθ dθ∫ t

t0

(t− s)−α(s− t0)−pα ds

= p(p− 1)C2
2p,αe

σ(t−t0)ρ2∫ 1

0

∫ 1

0

(
(t− t0)α ‖ω‖C(J;L2p(Ω)) + θηC2p,αe

σ(t−t0)ρ
)p−2

dηθ dθ

(t− t0)1−pαB(1− α, 1− pα). (12)

From (9), the estimate with respect to g2(s) is

(t− t0)α
∫ t

t0

(t− s)−α ‖g2(s)‖L2 ds

≤ δ(t− t0)α
∫ t

t0

(t− s)−αe−σ(t−t0) ds ≤ δ(t− t0)

1− α . (13)

Hence, (11), (12), and (13) yield

‖S(v)‖Xα

≤ sup
t∈J

(α
e

)α{
1 +

Cω(t− t0)2

(1− α)(2− α)

}(
‖v0‖L2 + (t− t0)α

∫ t

t0

(t− s)−α‖g(v(s))‖L2 ds

)
≤ sup

t∈J

(α
e

)α{
1 +

Cω(t− t0)2

(1− α)(2− α)

}
(
ε0 + (t− t0)α

∫ t

t0

(t− s)−α‖g1(s)‖L2 ds+ (t− t0)α
∫ t

t0

(t− s)−α‖g2(s)‖L2 ds

)
≤ sup

t∈J

(α
e

)α{
1 +

Cω(t− t0)2

(1− α)(2− α)

}(
ε0 + p(p− 1)C2

2p,αe
σ(t−t0)ρ2

∫ 1

0

∫ 1

0

(
(t− t0)α ‖ω‖C(J;L2p(Ω)) + θηC2p,αe

σ(t−t0)ρ
)p−2

dηθ dθ

(t− t0)1−pαB(1− α, 1− pα) +
δ(t− t0)

1− α

)
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≤
(α
e

)α{
1 +

Cωτ
2

(1− α)(2− α)

}(
ε0 + p(p− 1)C2

2p,αe
στρ2

(
τα ‖ω‖C(J;L2p(Ω)) + C2p,αe

στρ
)p−2

τ1−pαB(1− α, 1− pα) +
δτ

1− α

)

= W (τ)

(
ε0 + Lω(ρ)ρ2 +

δτ

1− α

)
. (14)

From (10) and (14), ‖S(v)‖Xα < ρ holds, implying S(v) ∈ V .
Next, we show that S is a contraction mapping on V . Let vi ∈ V (i = 1, 2). From

Lemma 2.5,∥∥∆α
µ (S(v1(t))− S(v2(t)))

∥∥
L2

≤
∫ t

t0

∥∥∆α
µU(t, s) (g(v1(s))− g(v2(s)))

∥∥
L2 ds

≤
(α
e

)α{
1 +

Cω(t− t0)2

(1− α)(2− α)

}∫ t

t0

(t− s)−α‖g(v1(s))− g(v2(s))‖L2 ds. (15)

From

g(v1(s))− g(v2(s))

= e−σ(s−t0)
{(
ω + eσ(s−t0)v1

)p
−
(
ω + eσ(s−t0)v2

)p
− pωp−1eσ(s−t0)(v1 − v2)

}
,

setting zi = eσ(s−t0)vi (i = 1, 2) in Lemma 3.1, we have

‖g(v1(s))− g(v2(s))‖L2

≤ p(p− 1)C2
2p,αe

σ(s−t0)∫ 1

0

∫ 1

0

(
‖ω‖L2p + ηC2p,αe

σ(s−t0)
∥∥∆α

µ(θv1 + (1− θ)v2)
∥∥
L2

)p−2

dη∥∥∆α
µ(θv1 + (1− θ)v2)

∥∥
L2 dθ

∥∥∆α
µ(v1 − v2)

∥∥
L2 .

Since the ball V is convex, and ‖vi‖Xα ≤ ρ (i = 1, 2), ‖θv1 + (1− θ)v2‖Xα ≤ ρ holds
for θ ∈ [0, 1]. We then obtain∫ t

t0

(t− s)−α ‖g(v1(s))− g(v2(s))‖L2 ds

≤
∫ t

t0

(t− s)−α
{
p(p− 1)C2

2p,αe
σ(s−t0)

∫ 1

0

∫ 1

0

(
‖ω‖L2p + ηC2p,αe

σ(s−t0)
∥∥∆α

µ(θv1 + (1− θ)v2)
∥∥
L2

)p−2

dη

∥∥∆α
µ(θv1 + (1− θ)v2)

∥∥
L2 dθ

∥∥∆α
µ(v1 − v2)

∥∥
L2

}
ds

≤ p(p− 1)C2
2p,αe

σ(t−t0)ρ

∫ 1

0

(
(t− t0)α ‖ω‖C(J;L2p(Ω)) + ηC2p,αe

σ(t−t0)ρ
)p−2

dη

(t− t0)1−(p+1)αB(1− α, 1− pα) ‖v1 − v2‖Xα . (16)
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Hence, from (15) and (16), we have

‖S(v1)− S(v2)‖Xα

≤ sup
t∈J

(t− t0)α
(α
e

)α{
1 +

Cω(t− t0)2

(1− α)(2− α)

}
∫ t

t0

(t− s)−α‖g(v1(s))− g(v2(s))‖L2 ds

≤ sup
t∈J

(t− t0)α
(α
e

)α{
1 +

Cω(t− t0)2

(1− α)(2− α)

}
p(p− 1)C2

2p,αe
σ(t−t0)ρ

∫ 1

0

(
(t− t0)α ‖ω‖C(J;L2p(Ω)) + ηC2p,αe

σ(t−t0)ρ
)p−2

dη

(t− t0)1−(p+1)αB(1− α, 1− pα) ‖v1 − v2‖Xα

≤ sup
t∈J

(α
e

)α{
1 +

Cω(t− t0)2

(1− α)(2− α)

}
p(p− 1)C2

2p,αe
σ(t−t0)ρ

∫ 1

0

(
(t− t0)α ‖ω‖C(J;L2p(Ω)) + ηC2p,αe

σ(t−t0)ρ
)p−2

dη

(t− t0)1−pαB(1− α, 1− pα) ‖v1 − v2‖Xα

≤
(α
e

)α{
1 +

Cωτ
2

(1− α)(2− α)

}
p(p− 1)C2

2p,αe
στρ(

τα ‖ω‖C(J;L2p(Ω)) + C2p,αe
στρ
)p−2

τ1−pαB(1− α, 1− pα) ‖v1 − v2‖Xα
= W (τ)Lω(ρ)ρ ‖v1 − v2‖Xα .

From the condition (10) stated in the theorem, W (τ)Lω(ρ)ρ < 1 holds. Therefore,
S becomes a contraction mapping under the assumptions of the theorem. Banach’s
fixed-point theorem asserts that there exists the unique fixed point of S in V .

Remark 2 The main feature of Theorem 3.1 is that the sufficient condition (10)
can be checked rigorously by verified numerical computations based on the interval
arithmetic. In addition, if the condition holds, the existence and local uniqueness of
the mild solution are also proved in the sense of C(J ;L2(Ω)) because there exists an
embedding D(∆α

µ) ↪→ L2(Ω). For the detailed estimate of the residual in (9), see
Appendix A in [21]. Moreover, when 1 < p < 2, the conclusion of Lemma 3.1 does not
hold. Then a more careful estimate than Lemma 3.1 is necessary, as outlined in [31].

4 Concatenation Scheme

After getting the local inclusion based on Theorem 3.1, we try to extend the time
interval in which the mild solution is enclosed. For this purpose, the initial function is
replaced by a ball enclosing the mild solution at the endpoint, we apply Theorem 3.1
for the initial-boundary value problem on the next time interval, and repeat. We called
such a process a concatenation scheme of verified numerical inclusion in [20].

4.1 Pointwise Error Estimate

For a natural number n, let 0 = t0 < t1 < · · · < tn <∞. We denote Ji = (ti−1, ti] and
τi = ti− ti−1 (i = 1, 2, . . . , n). We assume that the local inclusion of the mild solution
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is proved until the time interval Jn, i.e., the mild solution of (1) is locally enclosed in
each Ji so that

u ∈ BJi(ω, ρi) =

{
u : sup

t∈Ji
(t− ti−1)αe−σi(t−ti−1)‖∆α

µ(u− ω)‖L2 ≤ ρi
}

for some σi, τi, and ρi. In this subsection, we give the error estimate at the endpoint of
the time interval Jn = (tn−1, tn], namely, we will describe how to obtain εn satisfying
‖u(tn)− ω(tn)‖L2 ≤ εn. We call such an error estimate the pointwise error estimate.

For the scheme to succeed for a long time interval, the pointwise error estimate
should avoid the propagation of the previous estimate. Such a propagation can cause
dramatic over-estimation of the error. This is called the wrapping effect in the field
of verification methods for ordinary differential equations, and there are several tech-
niques for avoiding it [3, 15, 18, 25, 34], etc. Similarly, some shrinking technique for
the pointwise error estimate is necessary. In the following, we will provide a tech-
nique for shrinking the propagation using another fixed-point formulation based on
the evolution operator.

Define B(t) := −∆ − pω(t)p−1. Since A(t) generates the evolution operator and
satisfies A(t) = B(t) + σi, the real perturbed operator B(t) also generates [30] the
evolution operator {UB(t, s)}ti−1≤s≤t≤ti . Letting z = u− ω, the function z for t ∈ Ji
satisfies

z(t) = UB(t, ti−1)z(ti−1) +

∫ t

ti−1

UB(t, s)hi(z(s)) ds,

where

hi (z) = (ω + z)p − ωp − pωp−1z + ωp − ∂sω + ∆ω.

Furthermore, since λA is the lower bound of the minimal eigenvalue of A(t) for t ∈ Ji,
λA−σi denotes the lower bound of the minimal eigenvalue of B(t). From Lemma 2.1,
it holds for t and s ∈ Ji that

‖UB(t, s)ϕ‖L2 ≤ e−(λA−σi)(t−s)‖ϕ‖L2 , ∀ϕ ∈ L2(Ω). (17)

To obtain the pointwise estimate ‖u(tn) − ω(tn)‖L2 ≤ εn, we have the following
estimates using (17):

‖z(t0)‖L2 = ‖u0 − ω(t0)‖L2 ≤ ε0,

‖z(t1)‖L2 ≤‖UB(t1, t0)z(t0)‖L2 +

∫
J1

‖UB(t1, s)h1 (z(s))‖L2 ds

≤e−(λA−σ1)(t1−t0) ‖z(t0)‖L2 +

∫
J1

‖UB(t1, s)h1 (z(s))‖L2 ds

≤e−(λA−σ1)τ1ε0 + ν1 =: ε1,

where νi (i = 1, 2, . . . , n) is the estimate satisfying∫
Ji

‖UB(ti, s)hi (z(s))‖L2 ds ≤ νi. (18)
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We repeat the pointwise estimates:

‖z(t2)‖L2 ≤‖UB(t2, t1)z(t1)‖L2 +

∫
J2

‖UB(t2, s)h2 (z(s))‖L2 ds

≤e−(λA−σ2)(t2−t1) ‖z(t1)‖L2 +

∫
J2

‖UB(t2, s)h2 (z(s))‖L2 ds

≤e−(λA−σ2)τ2
(
e−(λA−σ1)τ1ε0 + ν1

)
+ ν2

=
(
e−(λA−σ2)τ2e−(λA−σ1)τ1

)
ε0 + e−(λA−σ2)τ2ν1 + ν2 =: ε2. (19)

In the last term of (19), the previous error estimate ε1 does not appear. Instead,
ε0, ν1, and ν2 are used for obtaining ε2. This is the essential point for avoiding the
propagation of the previous estimate because we obtain the pointwise error estimate
without the previous error estimate ε1. In the same way, we have

‖z(t3)‖L2 ≤‖UB(t3, t2)z(t2)‖L2 +

∫
J3

‖UB(t3, s)h3 (z(s))‖L2 ds

≤e−(λA−σ3)(t3−t2) ‖z(t2)‖L2 +

∫
J3

‖UB(t3, s)h3 (z(s))‖L2 ds

≤e−(λA−σ3)τ3
((
e−(λA−σ2)τ2e−(λA−σ1)τ1

)
ε0 + e−(λA−σ2)τ2ν1 + ν2

)
+ ν3

=
(
e−(λA−σ3)τ3e−(λA−σ2)τ2e−(λA−σ1)τ1

)
ε0 +

(
e−(λA−σ3)τ3e−(λA−σ2)τ2

)
ν1

+ e−(λA−σ3)τ3ν2 + ν3 =: ε3

and, consequently, the desired estimate is

‖z(tn)‖L2 ≤
(
e−(λA−σn)τne−(λA−σn−1)τn−1 · · · e−(λA−σ1)τ1

)
ε0

+
(
e−(λA−σn)τne−(λA−σn−1)τn−1 · · · e−(λA−σ2)τ2

)
ν1

+
(
e−(λA−σn)τne−(λA−σn−1)τn−1 · · · e−(λA−σ3)τ3

)
ν2

+ · · ·+ e−(λA−σn)τnνn−1 + νn =: εn. (20)

By handling the inside of all of the parentheses in (20) first, we expect the error esti-
mate to avoid the propagation of previous estimates. These estimates are imitations
of techniques for avoiding the wrapping effect in verification methods for ordinary dif-
ferential equations [15, 18, 34]. In the actual computation, we first store the estimates
ε0 and νi. After that, we multiply these by the insides of the parentheses. We then
obtain the pointwise error estimate without the previous error estimate. In Section 5,
we illustrate the efficiency of the proposed shrinking technique by numerical examples.

Remark 3 The estimate (20) is always satisfied regardless of the positiveness or neg-
ativeness of λA−σi. If λA−σi < 0, the term e−(λA−σi)τi increases the error estimate
due to e−(λA−σi)τi > 1. In that case, to obtain an accurate error estimate, one should
take sufficiently small τi so that e−(λA−σi)τi ≈ 1 holds. If we take a large step size, the
error estimate may increase rapidly. On the other hand, for a small step size, it may
be difficult to continue the concatenation scheme for a long time. Therefore, there is
a trade-off between the length of the step size and the accuracy of the error estimate.
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4.2 Method of Estimating νi

In this subsection, we introduce how to estimate νi in (18). Setting z1 = z, and z2 = 0
in Lemma 3.1, we have the following estimate for a fixed s ∈ Ji:

‖hi (z(s))‖L2

≤
∥∥(ω + z)p − ωp − pωp−1z

∥∥
L2 + ‖ωp − ∂sω + ∆ω‖L2

≤ p(p− 1)C2
2p,α

∥∥∆α
µz
∥∥2

L2

∫ 1

0

∫ 1

0

(
‖ω‖L2p + θηC2p,α

∥∥∆α
µz
∥∥
L2

)p−2
dηθdθ

+ ‖ωp − ∂tω + ∆ω‖L2

= p(p− 1)C2
2p,α(s− ti−1)−pαepσi(s−ti−1)

∥∥∥(s− ti−1)αe−σi(s−ti−1)∆α
µz
∥∥∥2

L2∫ 1

0

∫ 1

0

{
(s− ti−1)αe−σi(s−ti−1)‖ω‖L2p

+θηC2p,α

∥∥∥(s− ti−1)αe−σi(s−ti−1)∆α
µz
∥∥∥
L2

}p−2

dηθ dθ

+ ‖ωp − ∂tω + ∆ω‖L2

≤ p(p− 1)C2
2p,α(s− ti−1)−pαepσi(s−ti−1)ρ2

i∫ 1

0

∫ 1

0

{
(s− ti−1)αe−σi(s−ti−1)‖ω‖L2p + θηC2p,αρi

}p−2

dηθ dθ + δi,

using the estimate ‖ωp − ∂tω + ∆ω‖C(Ji;L2(Ω)) ≤ δi. Therefore, the estimate (18) is

∫
Ji

‖UB(ti, s)hi (z(s))‖L2 ds

≤
∫
Ji

e−(λA−σi)(ti−s)

(
p(p− 1)C2

2p,α(s− ti−1)−pαepσi(s−ti−1)ρ2
i

∫ 1

0

∫ 1

0

{
(s− ti−1)αe−σi(s−ti−1)‖ω‖L2p + θηC2p,αρi

}p−2

dηθ dθ + δi

)
ds

≤ p(p− 1)C2
2p,αρ

2
i

∫ 1

0

∫ 1

0

{
(ti − ti−1)α‖ω‖C(Ji;L2p(Ω)) + θηC2p,αρi

}p−2
dηθ dθ∫

Ji

e−(λA−σi)(ti−s)(s− ti−1)−pαepσi(s−ti−1)ds+ δi

∫
Ji

e−(λA−σi)(ti−s) ds

= p(p− 1)C2
2p,αρ

2
i

∫ 1

0

∫ 1

0

{
ταi ‖ω‖C(Ji;L2p(Ω)) + θηC2p,αρi

}p−2
dηθ dθ∫

Ji

e−(λA−σi)(ti−s)(s− ti−1)−pαepσi(s−ti−1) ds+ δi

(
1− e−(λA−σi)τi

λA − σi

)
,
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where we have two cases for the estimate∫
Ji

e−(λA−σi)(ti−s)(s− ti−1)−pαepσi(s−ti−1) ds

≤


epσiτiτ1−pα

i

1− pα λA − σi ≥ 0,

e((p+1)σi−λA)τiτ1−pα
i

1− pα λA − σi < 0.

Then, if λA − σi ≥ 0 holds, we take

νi = p(p− 1)C2
2p,αρ

2
i

∫ 1

0

∫ 1

0

{
ταi ‖ω‖C(Ji;L2p(Ω)) + θηC2p,αρi

}p−2
dηθ dθ(

epσiτiτ1−pα
i

1− pα

)
+ δi

(
1− e−(λA−σi)τi

λA − σi

)
.

Otherwise, in the case of λA − σi < 0, we take

νi = p(p− 1)C2
2p,αρ

2
i

∫ 1

0

∫ 1

0

{
ταi ‖ω‖C(Ji;L2p(Ω)) + θηC2p,αρi

}p−2
dηθ dθ(

e((p+1)σi−λA)τiτ1−pα
i

1− pα

)
+ δi

(
e(σi−λA)τi − 1

σi − λA

)
.

Remark 4 Controlling τi is also necessary so that νi is as small as possible. For
example, we should take sufficiently small νi so that epσiτi ≈ 1 holds for the case of
λA − σi > 0 and that e((p+1)σi−λA)τi ≈ 1 holds for the case of λA − σi < 0.

5 Numerical Examples

To illustrate the efficiency of our verification method, we show some numerical results.
Let Ω := (0, 1)2 be a unit square domain5 in R2, and set p = 2 in (1) to consider the
semilinear parabolic equation so called the Fujita-type equation

∂tu−∆u = u2 in (0, T )× Ω,

u(t, x) = 0, t ∈ (0, T ), x ∈ ∂Ω,

u(t0, x) = u0(x), x ∈ Ω,

(21)

where T > 0 is a fixed time, u0(x) = γ sin(πx1) sin(πx2), and γ is a parameter. It is
well-known that, for a sufficiently large γ, the solution of (21) blows up6 in finite time
[9]. When the scale of an approximate solution becomes large, it is difficult to verify
the existence and local uniqueness of the exact solution using the verification method.
Hence, we consider that this problem is suite for a benchmark test for illustrating the
accuracy of verification methods.

All computations are carried out on CentOS 6.3, Intel(R) Xeon(R) CPU E5-
2687W@3.10 GHz, and MATLAB 2016b with INTLAB [28] version 9. The approxi-
mate solution ω is

ω(t, x) =
∑
|m|≤N2

ũm(t)ψm(x),

5It can be proved that λmin = 2π2 on Ω.
6When γ = 27, the approximate solution seems to blow up in finite time.
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where m = (m1,m2) is a multi-index, and ψm(x) = sin(m1πx1) sin(m2πx2) (m1,m2 =
1, 2, . . . , N). We define the finite dimensional subspace of D(∆) as

VN :=

 ∑
|m|≤N2

amψm(x) : am ∈ R

 .

Each ũm(t) of ω is given by the Fourier-Galerkin procedure [5] and the Crank-Nicolson
scheme [11, 32] in the time variable. Namely, for 0 = t0 < t1 < · · · < tn = T , we
employ the full discretization scheme for obtaining {ui}i≥1 ⊂ VN such that(
ui − ui−1

τi
, ϕN

)
L2

− 1

2
(∆(ui + ui−1), ϕN )L2 =

1

2

(
u2
i + u2

i−1, ϕN
)
L2 , ∀ϕN ∈ VN .

Let ûi ∈ VN (i = 0, 1, . . . , n) be the numerical approximation of ui. The approximate
solution ω is constructed of ω(t, x) =

∑n
i=0 ûi(x)li(t), where li(t) is the linear Lagrange

basis [17] satisfying li(tj) = δij for j = 0, 1, . . . , n (Kronecker’s delta). Furthermore,
because each ûi(x) is described by ûi(x) =

∑
|m|≤N2 ũi,mψm(x),

ũm(t) :=

n∑
i=0

ũi,mli(t).

t

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
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2.5

3

analytic semigroup

evolution operator

Figure 1: Comparison with the previous verification method [21] using the analytic
semigroup; γ = 6.8, α = 1/2 (analytic semigroup), α = 3/8 (evolution operator),
µ = 70, and N = 5. Each ρi is plotted versus t. We stopped the concatenation scheme
using the evolution operator at T = 0.3.



94 Takayasu et al., Accurate Verification Method for Semilinear Heat Equations

The first result is compared with the previous verification method [21] using the
analytic semigroup generated by ∆. Figure 1 displays each radius of BJi(ω, ρi) in
which the mild solution of (21) is locally enclosed. The result of inclusion using the
evolution operator is more accurate than that of the previous one (using analytical
semigroup) because the concatenation scheme succeeds in enclosing the mild solution
for a long time. In particular, for the previous verification method, the accumulation
of the error estimate causes the failure in enclosing the mild solution at t = 0.203125.
On the other hand, the concatenation scheme based on the evolution operator can
continue the numerical verification without the accumulation of the error estimate.

t

0 0.05 0.1 0.15 0.2 0.25

ρ
i

×10
-3

0

1

2

3

4

5

6

without shrinking

with shrinking

Figure 2: The efficiency of the shrinking technique; γ = 7, α = 3/8, µ = 70, and
N = 5. Each ρi is plotted versus t. The concatenation scheme is stopped at T = 0.25.

Next, we illustrate the efficiency of the shrinking technique using the pointwise
error estimate discussed in Section 4.1. Figures 2 and 3 show that the shrinking
technique can control the propagation of the previous estimate to some extent. In
Figure 2, the error estimate ρi using our shrinking technique is slightly larger than
that without using shrinking technique for first several steps. After that, the estimate
becomes tighter than that without using our shrinking technique. This implies that the
shrinking technique reduces propagation of previous excess widths. Furthermore, in
Figure 3, if we take a rough step size, the propagation of the previous estimate causes
failure in enclosing the mild solution at t = 0.12482732616559. Such a failure does not
occur in the result with the shrinking technique, demonstrating the effectiveness of
the shrinking technique. As a result, the concatenation scheme succeeds in enclosing
the mild solution for a long time.
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Figure 3: The efficiency of our shrinking technique by taking a rough step size; γ = 7,
α = 3/8, µ = 70, and N = 5. Each ρi is plotted versus t. In the result without
shrinking, the accumulation of the error estimate occurs. The concatenation scheme
with our shrinking technique is stopped at T = 0.25.

Finally, we display the results of the concatenation scheme varying γ = 10, . . .,
18 in Figure 4. For each γ, the concatenation scheme succeeds in enclosing the mild
solution of (21) until at least T = 0.25. In this example, the choice of the shift value
µ is the key to the success of numerical verification. For example, if we set µ = 600
in the case of γ = 15, the verification cannot succeed as far as T = 0.25. In such a
case, the error estimate accumulates, and the condition of the local inclusion is not
satisfied. This implies that there exists an optimal shift value µ that depends probably
on both γ and N . In the actual computation, we experiment to find the appropriate
value of µ. Furthermore, when γ = 19, the verification scheme cannot enclose the
mild solution as far as T = 0.25. In this case, a more accurate approximate solution is
necessary, e.g., increasing the number of bases to N = 15 or more. On the other hand,
more computational resources are needed for the numerical verification using such an
accurate approximate solution.

6 Conclusion

In this paper, we have discussed an accurate method for guaranteeing the existence
and local uniqueness of mild solutions of semilinear heat equations. Our method con-
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Figure 4: Results of the concatenation scheme varying γ = 10, 11, . . . , 18 (α = 3/8,
µ = 600 (γ < 15), 550 (γ = 15), 350 (γ > 15), N = 11). Each ρi is plotted versus t. The
concatenation scheme succeeds in enclosing the mild solution of (21) until T = 0.25.

sists of a fixed-point formulation using the evolution operator instead of the analytic
semigroup; the pointwise error estimate by rearranged computing for shrinking the
propagation of over-estimates; and the concatenation scheme to extend the time in-
terval in which the mild solution is enclosed. As a result, compared with the previous
result (using the analytic semigroup), our method can enclose the mild solution for a
long time. We have also provided numerical results to illustrate the efficiency of our
verification method.

We conclude this paper by commenting on potential extensions. Our method could
be extended to more general nonlinearity when f(u) is a mapping from R to R such
that f ◦ u ∈ L2(Ω) holds for each u ∈ H1

0 (Ω). In addition, we assume that

• the mapping f is Fréchet differentiable (see, e.g, [22]) in the sense that f is an
operator from H1

0 (Ω) to L2(Ω), and

• there exists a monotonically non-decreasing function Lω : [0,∞) → [0,∞) cor-
responding to the first Fréchet derivative [22] of f such that∥∥(f ′[ω + z]− f ′[ω])ϕ

∥∥
L2 ≤ Lω (ρ) ρ‖∆α

µϕ‖L2

for any ϕ ∈ D
(
∆α
µ

)
, each t ∈ J , and z ∈ BJ(0, ρ) for a certain ρ > 0 defined in

Section 3.

Furthermore, the space domain Ω could be generalized to a convex polyhedral domain
in Rd (d = 1, 2, 3) by using a finite element method.
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