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Abstract

Reliable parameter identification for dynamic systems has to take into
account mathematical models that are predefined by domain-specific mod-
eling assumptions. For example, these assumptions result from the ba-
sic physical principles for the derivation of the equations of motion for
mechanical multibody systems or from the fundamental laws describing
electric circuits. During the identification, it is essential to determine
those parameter ranges that are simultaneously consistent with the before-
mentioned model structures and the measured data. Typically, measured
data are corrupted by random noise with certain probability density func-
tions and (bounded) errors due to limited sensor resolution. In this paper,
it is assumed that disturbances, summarizing all non-modeled external
influences acting onto the sensor signals, are described by worst-case in-
terval bounds. Then, the task of parameter identification results in the
(recursive) computation of closed intervals for all unknown parameters.
Moreover, parameters that may change their values depending on cur-
rent operating conditions have to be treated suitably by the identification
procedure. To make the parameter identification as efficient as possi-
ble, an approach for the sensitivity-based input optimization is presented
which aims (i) at reducing possible ambiguities between various param-
eters and (ii) at the speed-up of the identification so that the required
experiments can be made as short as possible. The before-mentioned
strategies for avoiding ambiguities are especially necessary if a class of
hybrid systems is considered. These hybrid systems are characterized by
state- and input-dependent transitions between different continuous-time
state-space representations.
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1 Introduction

Dynamic system models with state- and input-dependent transitions between different
continuous-time state-space representations are common for the mathematical mod-
eling of a large variety of technical systems. Among these, especially the description
of friction and hysteresis by piecewise defined analytic expressions is widely used in
both mechanical engineering and control engineering [3, 14, 15, 16]. The same holds
for hysteresis effects that are ubiquitous in electro-magnetic circuits.

In previous work, interval-based simulation algorithms were developed for the com-
putation of guaranteed state enclosures for initial value problems (IVPs) of ordinary
differential equations (ODEs) with piecewise-defined right-hand sides [1, 9, 12, 17, 18].
These simulations were then included in parameter identification routines, in which
the computed state enclosures are compared with measured data for selected state
variables with bounded errors. Hence, the verified simulation of these ODEs with
non-smooth right-hand sides is the basic building block for a model-based recursive
parameter identification. The corresponding identification algorithms are implemented
in a predictor-corrector framework, where the verified simulation is employed between
two subsequent points of time at which measurements become available. The consis-
tency of the simulated state enclosures on the one hand and the measured data on
the other hand is then ensured by suitable interval Newton methods [5, 10], contrac-
tor techniques [4], or (in the simplest possible situation) by directly intersecting the
simulated and measured intervals1.

As a benchmark application, the experimental identification of the mathematical
model of a drive train test rig is considered in this paper. The corresponding set
of ODEs with non-smooth right-hand sides is given in terms of an automaton rep-
resentation for all possible transitions between static friction and a piecewise linear,
velocity-proportional model for sliding friction. Coefficients for the rotary mass mo-
ment of inertia, the velocity-proportional sliding friction, and the initial breakaway
torque have to be identified experimentally by using only angle measurements deter-
mined by an encoder with a finite resolution. The corresponding measurement errors
can therefore be described in terms of an additive interval variable [14, 15].

To make the fundamental identification procedure applicable for further — espe-
cially more complex — system models, algorithmic extensions are developed which
allow for preventing an excessive growth of the computational effort if a larger number
of uncertain parameters are considered. On the one hand, this involves the derivation
of problem-specific subdivision routines for the exclusion of those parameter ranges
that are definitely inconsistent2 with the measured data and the given system model.
On the other hand, these subdivision heuristics tend to become excessively complex
for systems with a large number of unknown parameters. Therefore, it is necessary to
derive optimal inputs allowing for the excitation of the system in such a way that the
required parameter values can be estimated in an optimal way with respect to a cer-
tain performance criterion. These procedures make use of the differential sensitivities

1Besides the contraction of the predicted, i.e., simulated state intervals, these techniques
also allow for fault detection or for a falsification of modeling assumptions in cases in which
state intervals that are compatible with the measured data do not intersect with the predicted
enclosures of the state trajectories.

2Throughout this paper, consistent parameter intervals are those parameter ranges that
lead to predicted states of the system ODEs that can be explained by the available measure-
ments, while inconsistent parameter intervals are characterized by empty intersections of the
measured values and the corresponding simulated quantities.
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of state trajectories in operating regimes where the dynamics can be described locally
by means of an ODE with a smooth right-hand side.

This paper is structured as follows. Starting with the description of a motivating
benchmark scenario (Sec. 2), that is used for the experimental parameter identification
of a drive train test rig at the Chair of Mechatronics at the University of Rostock, sim-
ulation routines for ODEs with non-smooth right-hand sides and recursive parameter
identification procedures are reviewed in Secs. 3 and 4. The optimal input design in
Sec. 5 aims at the fastest possible parameter identification with reduced ambiguities
between the individual piecewise smooth system models of a hybrid dynamic system
given in the before-mentioned automaton representation. Experimental results for the
parameter identification are summarized in Sec. 6 before the paper is concluded in
Sec. 7 with an outlook on future work.

2 Benchmark Application

Figs. 1 and 2 give an overview of the drive train test rig that is used as an experimental
benchmark application for the verified parameter identification scheme considered in
this paper [14, 15]. It consists of an electric drive (operated in torque controlled mode)
that is rigidly attached to the drive-side shaft. Both shafts in Fig. 1 are connected to
each other via a toothed belt. This belt can be assumed to have negligible elasticity,
so that the major dynamics result from the acceleration and deceleration of the overall
mass moment of inertia (β−1) and from velocity-proportional friction (due to actuation
of a magnetic powder brake on the load-side shaft, characterized by the parameter α).
Static friction, which may change its value after each standstill is given by the value
TF,s.

electric 
drive

drive-side shaft

load-side shaft

deflector rolls 
with drive belt

brake

angle 
measurement

Figure 1: Test rig for the experimental parameter identification.

According to [14, 15], the state equations of the drive train test rig are given by[
ẋ1(t)
ẋ2(t)

]
=

[
x2(t)

α · x2(t) + β · (u(t)− TF(t))

]
(1)

with the breakaway torque

TF(t) = TF,s · sign(x2(t)) . (2)
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Figure 2: Modeling of the test rig: Definition of system components and relevant
variables.

For the case of standstill, the state equations turn into[
ẋ1(t)
ẋ2(t)

]
=

[
0
0

]
. (3)

The state transition diagram in Fig. 3 summarizes all possible events in which
transitions between the discrete models S1 for sliding friction with negative angular
velocities ωM = x2 < 0, S3 for sliding friction with positive angular velocities x2 > 0,
and for standstill (S2 with x2 = 0) become active3.

Although the individual discrete submodels Si, i ∈ {1, 2, 3}, are mutually exclusive
in the case of a simulation with exactly known parameters, the interval-based simu-
lation routine presented in the following section with uncertain parameters α ∈ [α],
β ∈ [β], and [TF,s] :=

[
TF,s ; TF,s

]
has to be capable of tracing scenarios in which

also more than one of the submodels Si may be active at a time (cf. Fig. 4). These
situations arise, for example, if the simulated velocity intervals [x2] simultaneously
contain the value zero as well as positive and/or negative values.

Note that for the uncertain model in Fig. 4, the following definitions hold for the
system input ũ(t) := u(t) − TF(t) and for the worst-case influence of static friction
[Tmax

F ] :=
[
−TF,s ; TF,s

]
.

After an overview of the underlying simulation procedure for the uncertain ODE
system with a non-smooth right-hand side, the static and sliding friction parameters
as well as the mass moment of inertia are identified with an interval implementation
of an observer-based predictor-corrector identification procedure.

3 Interval-Based Verified Simulation Procedure

Because measured data are only available at equidistant temporal sampling points for
the identification of system parameters, a verified simulation routine is employed in
the prediction stage of the observer-based approach presented in the following section
that is based on a discretization of the considered time horizon.

3Note that the modes S1 and S3 differ in the sign of the breakaway torque in (2).
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Figure 3: State transition diagram (automaton representation) for switchings between
sliding and static friction modes with nominal parameters (all discrete model states
are mutually exclusive).
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ẋ1 (t) = x2 (t)

Model S3

(
sup

(
[u]

)
≥ inf

(
[TF,s]

))
&
(

[x2] ∩ 0 6= ∅
)

inf
(

[u]
)
≤ − inf

(
[TF,s]

)
sup

(
[u]

)
≥ inf

(
[TF,s]

)

(
inf

(
[u]

)
≤ − inf

(
[TF,s]

))
&
(

[x2] ∩ 0 6= ∅
)

[u] ∩
[
Tmax
F,s

]
6= ∅

Figure 4: State transition diagram for switchings between sliding and static friction
modes with uncertain parameters.
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According to

x (tk+1) = x (tk) +

ν∑
i=1

hi

i!
f (i−1) (x (tk) ,p,u (tk) , tk) + e (x (ξ) ,p,u (ξ) , ξ) ,

ẋ(tk) := f (x (tk) ,p,u (tk) , tk) , x (tk) ∈ Rn , p ∈ Rnp ,

(4)

a Taylor series expansion (c.f [6, 8] for further details) of the solution of the IVP
with respect to time is performed with the integration step-size h, i.e., tk = kh,
tk+1 = (k + 1)h, and tk ≤ ξ ≤ tk+1.

For the implementation of the verified simulation routine, the following assump-
tions are made4:

• All system parameters p ∈ [p] are piecewise constant between two subsequent
sampling points tk and tk+1.

• Changes of the control signals u(tk) only occur at the discretization points t = tk.

• A recursive computation of the total derivatives f (i−1) (resp. of the Taylor series
coefficients of the state trajectories) is performed in terms of smooth right-hand
sides f ∈ Cν of the ODE with ṗ = 0 and u̇(t) = 0 for each open time interval
tk < t < tk+1.

• Guaranteed bounds of the discretization error are computed by

e (x (ξ) ,p,u (ξ) , ξ) ⊆ [ek] :=
hν+1

(ν + 1)!
f (ν) ([Bx,k] , [p] ,u ([τk]) , [τk]) , (5)

where a Picard iteration [2, 7] is used to determine the bounding box [Bx,k]
with the parameter and control enclosures [p] and u ([τk]), respectively, that are
valid for the complete time interval [τk] := [tk ; tk+1].

According to the following four-stage procedure, the simulation approach above for
smooth systems of ODEs is generalized to scenarios according to Fig. 4 with transitions
between multiple discrete model states. As explained in detail in [1, 16], the required
algorithmic steps are given by:

Step 1 Calculation of the bounding box [Ba,k] for the time interval [τk] for the union
of all system models Si which are active at t = tk. Here, the term fa is a
continuously differentiable function enclosing the right-hand sides of all active
models at t = tk.

Step 2 Check for additionally activated models depending on the states included in
the bounding box [Ba,k]:

• Repeat Step 1 if additional models are activated within the time interval
[τk] after a modification of fa by considering all additionally activated
submodels Si.

• Otherwise, continue with Step 3.

Step 3 Interval evaluation of the series expansion in (4), (5) for f (·) = fa (·). For the
following identification procedure, it is sufficient to choose ν ≡ 1 due to the fact
that measured data are available at dense temporal discretization points.

Step 4 All submodels Si are deactivated which can no longer be active at t = tk+1.

4Preconditioning strategies of the state equations for a reduction of the wrapping effect
according to, for example, [6, 8] are not considered in this paper, because the consistency
test between measured and simulated states during the parameter identification is already
sufficient to suppress a blow-up of state enclosures for the application scenario at hand.
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4 Verified Parameter Identification

4.1 Fundamental Identification Procedure

For the sake of a verified parameter identification [14, 15], the state enclosures and
possible parameter intervals at a point of time t = tk are stored in a list of L interval
boxes [

z〈l〉
]

(tk) :=


[
x〈l〉
]

(tk)[
p〈l〉

]
(tk)

 , l = 1, . . . , L . (6)

Out of this list of L boxes, M interval subdivisions are performed, where according
to the following criteria, an individual interval l may be selected multiple times under
the precondition that it is characterized by a non-zero volume

n+np∏
j=1

diam
{[
z
〈l〉
j

]
(tk)

}
6= 0 . (7)

Hence, the interval subdivision leads to a new list of intervals of length L + M −
1. These interval boxes are propagated until the next measurement point tk+1 by
means of the verified integration of the IVP described in Sec. 3. The new list of state

enclosures at the next measurement point is then given by the boxes
[
z〈l〉
]

(tk+1),

l = 1, . . . , L+M − 1.
If selected state variables are measured directly, an intersection of the predicted in-

tervals is performed with the range of uncertain measured data according to z1(tk+1) ∈
[ym] (tk+1). Here, for sake of a simplified notation, it is assumed that only the first
state variable is available as a measured variable. Note that in cases in which a linear
or nonlinear combination of several state variables characterizes the measurement, in-
terval Newton techniques or contractor approaches need to be applied to restrict the
predicted interval boxes to domains that are consistent with the measured information.
For a direct measurement of the first state variable, the before-mentioned intersection
yields [

z̃
〈l〉
1

]
(tk+1) :=

[
z
〈l〉
1

]
(tk+1) ∩ [ym] (tk+1) . (8)

In the list of L + M − 1 interval boxes, all subintervals
[
z
〈l〉
1

]
(tk+1) are re-

placed by
[
z̃
〈l〉
1

]
(tk+1) for which

[
z̃
〈l〉
1

]
(tk+1) 6= ∅ holds. All non-overlapping intervals[

z̃
〈l〉
1

]
(tk+1) = ∅ are inconsistent and, therefore, deleted from the list.

In the considered application scenario, the static friction value may change after
each standstill of the drive train. Hence, static friction subintervals are replaced with
their initial range if standstill is detected for a minimum time span. This information
is obtained from the test rig by a corresponding binary signal (start/stop indicator)
of the velocity sensor.

After the intersection (8) and the elimination of guaranteed inconsistent intervals,
a convex hull of selected boxes with a sufficiently small amount of overestimation can
be determined to reduce the number of subintervals to L∗ with the new list length
L := L∗. For that purpose, the merging approach presented in [13] is employed. Note
that the replacement of static friction intervals by their initialization values as well as
the merging of selected interval boxes can be employed interchangeably.

The block diagram in Fig. 5 gives a summary of the observer-based recursive state
and parameter identification procedure.
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Figure 5: Block diagram of the observer-based identification approach.

4.2 Subdivision Heuristics for the Elimination of Incon-
sistent Parameter Intervals

In the case of ODE systems with non-smooth right-hand sides, interval uncertainty
causes the phenomenon that multiple submodels can be active simultaneously in a
verified simulation. Hence, for an efficient experimental parameter identification, both
the subdivision procedure and the optimal input parameterization should be set up in
such a way that the likelihood for multiple simultaneously active submodels is reduced.

Besides the following subdivision heuristics, this can be done by an appropriate
choice of the system input u(t) which enhances the efficiency of the subdivision strategy
by a speed-up in the exclusion of inconsistent parameter intervals and, therefore, also
ambiguous submodels. Obvious approaches are the choice of slowly increasing input
torques for the considered drive train in standstill phases to detect the bounds of the
interval for the static friction coefficient accurately. The same also holds for using slow
breaking phases before the standstill to again find the bounds for the static friction
torque as accurately as possible. In addition, a sensitivity-based input optimization
can be used in the sliding friction phase to estimate friction and inertia properties
(cf. Sec. 5).

The interval subdivision strategy consists of the following stages5. First, the can-
didate interval (from a temporary list of L′ subintervals) to be subdivided is chosen
as the one with the largest pseudo volume

l∗ = arg max
l=1,...,L′

n+np∏
j=1

diam
{[
z
〈l〉
j

]
(tk)

}
, L′ ≥ L . (9)

Second, ambiguities between static and sliding friction are reduced by splitting the
static friction interval if

[u] (tk) ∩ hull
{
−
[
T
〈l∗〉
F,s

]
,
[
T
〈l∗〉
F,s

]}
6= ∅ (10)

is satisfied. There, the splitting point for the interval
[
T
〈l∗〉
F,s

]
is chosen

• as u(tk) + ε, ε > 0, if [u] (tk) > 0 with T
〈l∗〉
F,s < u(tk) and T

〈l∗〉
F,s > u(tk) holds,

5In addition to the following heuristics of M interval splittings, it is optional to subdi-

vide also velocity intervals with diam
{[
x
〈l∗〉
2

]}
> v̄ into each Mv equally large subintervals.

Benefits of this extension were demonstrated in [14].
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• as u(tk)− ε, ε > 0, if [u] (tk) < 0 with −T 〈l
∗〉

F,s < u(tk) and −T 〈l
∗〉

F,s > u(tk) holds,
or

• as the midpoint of
[
T
〈l∗〉
F,s

]
in all other cases.

Furthermore, to avoid unnecessarily conservative interval bounds in cases where (10)
is not true, the following interval bisections are performed (with criteria of higher
priority listed first):

• The angular velocity interval6
[
x
〈l∗〉
2

]
(tk) is split for

diam
{[
x
〈l∗〉
2

]
(tk)

}
≥ diam

{[
β〈l
∗〉
]}

, (11)

• the interval
[
β〈l
∗〉
]

is split for([
α〈l
∗〉
]
·
[
x
〈l∗〉
2

]
(tk)

)
∩
([
β〈l
∗〉
]
·
(

[u] (tk)−
[
T
〈l∗〉
F,s

]))
6= ∅ , (12)

• else, the interval
[
α〈l
∗〉
]

is selected for bisectioning at its midpoint.

The replacement of the static friction interval at standstill of the test rig in Fig. 1 is
performed separately for each list element l = 1, . . . , L by the initially assumed range
TF,s ∈

[
T ini
F,s

]
according to [

T 〈l〉a

]
:=
[
T ini

F,s ; T
〈l〉
F,s

]
[
T
〈l〉
b

]
:=
[
T
〈l〉
F,s ; T

〈l〉
F,s

]
[
T 〈l〉c

]
:=
[
T
〈l〉
F,s ; T

ini
F,s

]
.

(13)

This leads to a list of up to the threefold length 3L, where
[
T
〈l〉
F,s

]
is replaced by

each of the three intervals
[
T
〈l〉
a

]
,
[
T
〈l〉
b

]
, and

[
T
〈l〉
c

]
which has a non-zero diameter.

Also at this point, a subsequent merging of subintervals as mentioned in Sec. 4.1 can
be performed (cf. [13]). However, it should be taken into account that merging of
intervals is avoided if they originate from different activated discrete model states Si,
i ∈ {1, 2, 3}.

5 Sensitivity-Based Input Optimization

Within each piecewise smooth operating regime Sj of the ODE system

ẋ(t) = fSj (x(t),u(t), ξ) , (14)

sensitivity equations [11]

ṡi,j(t) =
∂fSj (x(t),u(t), ξ)

∂x(t)
· si,j(t) +

∂fSj (x(t),u(t), ξ)

∂ξi
(15)

6Trisectioning of
[
x
〈l∗〉
2

]
(tk) around x2 = 0 is optionally possible, if static and sliding

friction may be true simultaneously.
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are defined for each parameter ξi, i = 1, . . . , nξ, with the initial conditions si,j (t0) = 0.
In (15), ξ contains all components of the complete parameter vector p that need to
be identified for the subsystem model Sj .

To determine control signals that lead to a maximization of the sensitivity of the
system outputs with respect to the parameters to be identified, the (feedforward) con-
trol is either described as a sequence of piecewise constant inputs or by time-dependent
polynomials as basis functions with free weighting coefficients. If, for example, Bern-
stein polynomials

b(t) =
[
b0,MB(t) . . . bMB,MB(t)

]T
(16)

of the order MB with

bk,MB(t) =

(
MB

k

)
·
(
t− t0
t1 − t0

)k
·
(
t1 − t
t1 − t0

)MB−k

, k = 0, . . . ,MB (17)

are chosen as the basis functions over a time interval t ∈ [t0 ; t1], the input vector is
defined as

u(t) =

 u1,0 . . . u1,MB

...
...

unu,0 . . . unu,MB

 · b(t) . (18)

Now, the parameters ul,k, k = 0, . . . ,MB, are determined for each system input
l = 1, . . . , nu by the minimization of the integral performance criterion7 (εi > 0)

J =

t1∫
t0

(x1 − x1,d)2 +

nξ∑
l=1,l 6=i

κls
T
l Qlsl +

1

κisTi,jQisi,j + εi
+ κuuTQuu

dτ . (19)

The minimization of the cost function J , defined for the discrete submodel Sj ,
aims at solving the following tasks simultaneously:

• Tracking of a desired trajectory x1,d for the measured system output x1. As
before, it is assumed without loss of generality that the system output coincides
with the first component of the state vector x(t).

• The sensitivity of the measured output with respect to the parameter to be
identified should be maximized.

• The measured output should be as insensitive as possible with respect to changes
in all other parameters.

• A limitation of the control effort can be achieved by including a quadratic
penalty term in the cost function.

The weighting factors

Qi = e1e
T
1 and κi = ∆ξ2i for all i = 1, . . . , nξ (20)

are chosen such that tracking errors as well as all sensitivity values are normalized to
lie in the same orders of magnitude, when the system input is optimized such that
the sensitivity of the output with respect to the parameter ξi (indicated by picking
out the first entry of si,j with the matrix Qi) becomes as large as possible. Note that
∆ξi represents the typical range of variations of the i-th parameter to achieve the
above-mentioned normalization.

7Obviously, also extensions by terminal cost functions at t = t1 are possible.
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6 Experimental Results

As a reference solution for the verified parameter identification, the input torque for
the electric motor used in [14] is firstly employed. This input leads to the identification
results shown in Fig. 6. There, the test rig starts moving at t ≈ 40 s and performs
driving cycles of a length of eight seconds each, starting at standstill, accelerating to
a phase with constant velocity, and coming to a standstill again. It can be noticed
that both interval parameters [α] and [β] can be improved noticeably by the verified
identification procedure.

The identification routine was parameterized with M = 50 subdivisions at each
point at which measured data become available (tk+1−tk = 10 ms) and with additional
Mv = 20 subdivisions of the velocity interval according to footnote 5. Since the
identification routine is evaluated offline for a set of stored measured data, the complete
routine has been repeated after the point t = 80 s. It can be seen that the improved
parameter intervals for [α] and [β] lead to enhanced estimates for the static friction
torque TF,s in the second and third repetition of the identification, where the final
parameter intervals for [α] and [β] at the end of the previous run were used for a re-
initialization. After each standstill of the test rig, the static friction interval was reset
to its initial value according to (13) to account for the phenomenon that the initial
breakaway torque is not constant in the application at hand.
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Figure 6: Interval enclosures for the estimated parameters [p] (t) without application
of the sensitivity-based input optimization [14].

To enhance the identification quality, the sensitivity-based input optimization rou-
tine has been employed. It makes use of the cost function J defined in (19) for the
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submodel S3 (sliding friction with positive velocities). The desired reference trajectory
(for a fair comparison to the basic optimization, t1 = 8 s holds) is depicted in Fig. 7a.
Switching off all sensitivity terms by weighting factors that are equal to zero, an input
torque can be computed according to Fig. 7b by a fifth-order Bernstein polynomial
approximation which ensures practically perfect trajectory tracking. This input is
adjusted by choosing non-zero weights for the sensitivity terms in (19). The corre-
sponding optimization results are summarized in Fig. 8. According to Fig. 8a, the
modified input leads to acceptably small deviations from the reference angle x1,d(t),
caused by sharp torque variations at the begin and end of each driving cycle (Fig. 8b).

The modified driving cycle is now employed for the parameter identification with
identical numbers of subdivisions as in the reference solution. The estimated interval
parameters — that change noticeably as compared to Fig. 6 — are depicted in Fig. 9.
It can be seen that the parameter [β] is identified significantly sharper during the
first execution of the identification routine, where the non-zero input torque was again
activated at t ≈ 40 s. For the second and third run, an intersection with the results of
the basic identification was performed since both provide verified parameter estimates.
This result highlights that the enhanced actuation of the system typically leads to
tighter parameter enclosures with a reduced experimental effort.
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(a) Reference and simulated output trajec-
tory for the system with κi = 0 and κu = 0.
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Figure 7: Input optimization (dynamic feedforward control) for a nominal plant model
with α = 4.5 and β = 65 without sensitivity extensions of the cost function J .

7 Conclusions and Outlook on Future Work

In this paper, a verified identification procedure was presented for continuous-time
dynamic system models with state-dependent transitions between different state-space
representations. The challenge for the development of corresponding identification
routines is to make sure that ambiguities between the individual subsystem models
are reduced as far as possible.

On the one hand, efficient problem-oriented interval subdivision procedures help to
rule out submodels that are definitely inconsistent with measured data with bounded
tolerances. Here, for example velocity intervals need to be bisected to make sure that
the identification routine can distinguish between descriptions for sliding and static
friction if mechanical applications are concerned.
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(a) Reference x1,d (dashed line) and simu-
lated output trajectory x1 (solid line) for the
system with i = 1, κ1 = 0.01, κ2 = 10,
ε1 = 0.01, and κu = 0.
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Figure 8: Input optimization (dynamic feedforward control) for a nominal plant model
with α = 4.5 and β = 65 with sensitivity extensions of the cost function J (ξ1 = α,
ξ2 = β).
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Figure 9: Interval enclosures for the estimated parameters [p] (t) with application of
the sensitivity-based input optimization.
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On the other hand, a novel sensitivity-based procedure was introduced that helps
to improve the identifiability of selected parameters by an optimization-based param-
eterization of the system’s control signals.

Future work aims at the validation of the developed optimization procedure for
more complex system models, both with a larger number of submodels, more state
variables, and higher-dimensional parameter vectors.
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