
Optimal Order Constructive a Priori Error

Estimates for a Full Discrete Approximation of

the Heat Equation∗

Takuma Kimura§

Saga University, Saga 840-8502, Japan

tkimura@cc.saga-u.ac.jp

Teruya Minamoto¶

Saga University, Saga 840-8502, Japan

minamoto@is.saga-u.ac.jp

Mitsuhiro T. Nakao‖

Waseda University, Tokyo 169-8555, Japan

mtnakao@aoni.waseda.jp

Abstract

In this paper, we consider constructive a priori error estimates for a full
discrete numerical solution of parabolic initial boundary value problems.
Our method is based on the finite element Galerkin method with an inter-
polation in time that uses the fundamental solution for semidiscretization
in space. Particularly, we present optimal order error estimates for the lin-
ear finite element in both space and time directions. These error estimates
are sharper than the existing results in the sense of convergence order to
exact solutions. Since the sharply constructive error estimates play an es-
sential role in improving the efficiency of the verification costs, our results
are expected to contribute to a new development of the numerical proof
for parabolic problems. We also present some numerical examples which
confirm that our estimates have the exactly the same order of convergence
as the a posteriori errors.
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1 Introduction

We consider constructive a priori error estimates for an approximate solution of the
following equations with homogeneous initial and boundary conditions:

∂u

∂t
− ν∆u = f(x, t) in Ω× J,

u(x, t) = 0 on ∂Ω× J,
u(x, 0) = 0 in Ω,

(1)

where Ω ⊂ Rd(d ∈ {1, 2, 3}) is a bounded polygonal or polyhedral domain, J :=
(0, T ) ⊂ R (for a fixed T < ∞) is an open interval, ν is a positive constant, and
f ∈ L2(J ;L2(Ω)).

In [3, 4], we defined a full discrete approximation P khu for (1) and derived several
error estimates with applications to nonlinear problems, where h and k are mesh size
for Ω and J , respectively. Our method is based on the finite element Galerkin method
with an interpolation in time that uses the fundamental solution for semidiscretization
in space. We will describe in detail the definition of P khu in Section 3.

In [4], the authors studied the optimal order L2(J ;H1
0 (Ω)) and L2(J ;L2(Ω)) error

estimates for P khu with the assumption that k = h2. In this paper, assuming that f is
sufficiently smooth, we show the optimal order error estimates can be obtained even
if k 6= h2, which is an extension and improvement of the results in [4].

2 Notation

In this section, we introduce some function spaces, operators, and other notation, most
of them taken from [4, 5].

Let L2(Ω) be the usual Lebesgue spaces on Ω defined by the natural inner product
(u, v)L2(Ω) :=

∫
Ω
u(x)v(x) dx. Let H1(Ω) be the usual Sobolev spaces on Ω defined

by the inner product (u, v)H1(Ω) := (∇u,∇v)(L2(Ω))d =
∑d
i=1

∫
Ω

∂u(x)
∂xi

∂v(x)
∂xi

dx. Also,

let H1
0 (Ω) be a subspace of H1(Ω) defined by H1

0 (Ω) :=
{
u ∈ H1(Ω) ; u = 0 on ∂Ω

}
with inner product (u, v)H1

0 (Ω) := (∇u,∇v)(L2(Ω))d .

Let ∆ : L2(Ω)→ L2(Ω) be the Laplace operator defined by ∆u(x) =
∑d
i=1

∂2

∂x2i
u(x)

that is self-adjoint on the domain D(∆) :=
{
u ∈ H1

0 (Ω) ; ∆u ∈ L2(Ω)
}

.
Let V 1(J) be a subspace of H1(J) defined by V 1(J) :=

{
u ∈ H1(J) ; u(0) = 0

}
.

Then, V 1(J) is a Hilbert space with inner product (u, v)V 1(J) :=
(
∂
∂t
u, ∂

∂t
v
)
L2(J)

.

The time-dependent Lebesgue space L2
(
J ;L2(Ω)

)
is defined as a space of square-

integrable L2(Ω)-valued functions on J . Then, L2
(
J ;L2(Ω)

)
is a Hilbert space with

inner product (u, v)L2(J;L2(Ω)) :=
∫
J

∫
Ω
u(x, t)v(x, t) dx dt. We denote the function

space L2
(
J ;L2(Ω)

)
as L2L2, for short. In this paper, abbreviations like L2L2 for

L2
(
J ;L2(Ω)

)
will often be used. Let L2

(
J ;H1

0 (Ω)
)

be a subspace of L2L2 defined by

L2(J ;H1
0 (Ω)

)
:=
{
u ∈ L2L2; ∇u ∈ (L2(J ;L2(Ω)

)
)d, u( · , t) = 0 on ∂Ω,

for almost all t ∈ J} .
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Then, L2H1
0 ≡ L2

(
J ;H1

0 (Ω)
)

is a Hilbert space with inner product (u, v)L2H1
0

:=

(∇u,∇v)(L2L2)d . Let V 1
(
J ;L2(Ω)

)
be a subspace of L2L2 defined by

V 1(J ;L2(Ω)
)

:=

{
u ∈ L2(J ;L2(Ω)

)
;
∂u

∂t
∈ L2(J ;L2(Ω)

)
, u( · , 0) = 0 in L2(Ω)

}
.

Then, V 1L2 ≡ V 1
(
J ;L2(Ω)

)
is a Hilbert space with inner product (u, v)V 1L2 :=(

∂u
∂t
, ∂v
∂t

)
L2L2 . We define the Hilbert space V := V 1L2 ∩ L2H1

0 with inner product

(u, v)V := (u, v)V 1L2 + (u, v)L2H1
0

=
(
∂u
∂t
, ∂v
∂t

)
L2L2 + (∇u,∇v)(L2L2)d . Last, we define

the partial differential operator ∆t : L2L2 → L2L2 by ∆t := ∂
∂t
− ν∆ on the domain

D(∆t) := V 1L2 ∩ L2
(
J ;D(∆)

)
.

3 Existing Error Estimates

In this section, we define P khu and describe the error estimates derived in [4].

Let Sh(Ω) be a finite-dimensional subspace of H1
0 (Ω) dependent on the discretiza-

tion parameter h. For example, Sh(Ω) is considered to be a finite element space
with mesh size h. Let n be the number of degrees of freedom of Sh(Ω), and let
{ϕi}ni=1 ⊂ H1

0 (Ω) be the basis functions of Sh(Ω).

In [4], we assume the inverse estimates on Sh(Ω) as follows:

Assumption 3.1 There exists a positive constant Cinv(h) satisfying

‖uh‖H1
0 (Ω) ≤ Cinv(h) ‖uh‖L2(Ω) , ∀uh ∈ Sh(Ω). (2)

For example, if Ω is a bounded open interval in R, and Sh(Ω) is the P1 finite element
space (i.e., spanned by piecewise linear basis functions [1, Section 3]), then Assump-

tion 3.1 is satisfied for Cinv(h) =
√

12
hmin

, where hmin is the minimum mesh size in the

division of Ω (see e.g., [9, Theorem 1.5]).

Let P 1
h : H1

0 (Ω) → Sh(Ω) be an H1
0 -projection. Namely, for an arbitrary element

u ∈ H1
0 (Ω), P 1

hu ∈ Sh(Ω) satisfies the variational equation(
∇(u− P 1

hu),∇vh
)

(L2(Ω))d
= 0, ∀vh ∈ Sh(Ω). (3)

We need the following assumptions as the a priori error estimates for P 1
h .

Assumption 3.2 There exists a positive constant CΩ(h) satisfying∥∥u− P 1
hu
∥∥
H1

0 (Ω)
≤ CΩ(h) ‖∆u‖L2(Ω) , ∀u ∈ D(∆), (4)∥∥u− P 1

hu
∥∥
L2(Ω)

≤ CΩ(h)
∥∥u− P 1

hu
∥∥
H1

0 (Ω)
, ∀u ∈ H1

0 (Ω). (5)

For example, if Ω is a bounded open interval in R, and Sh(Ω) is the P1 finite element
space, then Assumption 3.2 is satisfied for CΩ(h) = h

π
, where h is the mesh size (see

e.g., [2, 6]).

Let V 1
k (J) be a finite-dimensional subspace of V 1(J) dependent on the discretiza-

tion parameter k. For example, V 1
k (J) is considered to be a finite element space with

mesh size (time step size) k. Let m be the number of degrees of freedom for V 1
k (J).
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We assume that Πk : V 1(J) → V 1
k (J) is a Lagrange interpolation operator.

Namely, if the mesh points on J are taken as 0 = t0 < t1 < · · · < tm = T , for
any element u ∈ V 1(J), Πku ∈ V 1

k (J) satisfies

u(ti) =
(
Πku

)
(ti), ∀i ∈ {1, . . . ,m}. (6)

We need the following assumption as the a priori error estimate for Πk.

Assumption 3.3 There exists a positive constant CJ(k) satisfying

‖u−Πku‖L2(J) ≤ CJ(k) ‖u‖V 1(J) , ∀u ∈ V 1(J). (7)

For example, if V 1
k (J) is the P1 finite element space, then Assumption 3.3 is satisfied

by CJ(k) = k
π

(see e.g., [9, Theorem 2.4]).
Let V 1

(
J ;Sh(Ω)

)
be a subspace of V corresponding to the semidiscretized approx-

imation in the spatial direction, and the space V 1
k

(
J ;Sh(Ω)

)
is defined as the tensor

product V 1
k (J)⊗Sh(Ω), which corresponds to a full discretization. We now define the

semidiscretization operator Ph : V → V 1
(
J ;Sh(Ω)

)
by the following weak form for

any u ∈ V(
∂

∂t

(
u− Phu

)
(t), vh

)
L2(Ω)

+ ν
(
∇
(
u− Phu

)
(t),∇vh

)
(L2(Ω))d

= 0,

∀vh ∈ Sh(Ω), t ∈ J. (8)

Additionally, corresponding to the homogeneous initial condition, we impose the re-
quirement Phu(·, 0) = 0.

We now define the symmetric and positive definite matrices Lϕ and Dϕ in Rn×n
by

Lϕ,i,j := (ϕj , ϕi)L2(Ω) , Dϕ,i,j := (∇ϕj ,∇ϕi)(L2(Ω))d , ∀i, j ∈ {1, . . . , n}.

Let f := (f1, . . . , fn)T ∈ L2(J)n be a vector function defined by fi := (f, ϕi)L2(Ω). From

the fact that Phu ∈ V 1
(
J ;Sh(Ω)

)
, there exists a coefficient vector u := (u1, . . . , un)T ∈

V 1(J)n such that

Phu(x, t) =

n∑
j=1

ϕi(x)uj(t) = ϕ(x)T u(t),

where ϕ := (ϕ1, . . . , ϕn)T . Then, the variational equation (8) is equivalent to the
following system of linear ODEs with homogeneous initial condition:

Lϕu
′ + νDϕu = f. (9)

Noting that (9) is a system of nonhomogeneous linear ODEs with constant coefficients,
by using the fundamental matrix of the system, we obtain

u(t) =

∫ t

0

exp
(
(s− t)νL−1

ϕ Dϕ
)
L−1
ϕ f(s) ds. (10)

Here, ‘exp’ means the exponential of a matrix. By using this representation, we define
the full discretization P khu ∈ V 1

k

(
J ;Sh(Ω)

)
of (1) by the interpolation

P khu(x, ti) =
(
Πkuh

)
(x, ti), ∀x ∈ Ω, ∀i ∈ {1, . . . ,m}. (11)

Thus, the full-discretization operator P kh : V → V 1
k

(
J ;Sh(Ω)

)
is defined as the com-

position of Ph and Πk, that is, by P kh := ΠkPh.
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Theorem 3.1 (Theorem 5.5 & Theorem 5.6 in [4]) Under Assumption 3.2, As-
sumption 3.1, and Assumption 3.3, we have the following constructive a priori error
estimates:∥∥∥u− P khu∥∥∥

L2H1
0

≤ C1(h, k) ‖f‖L2L2 , ∀u ∈ V ∩ L2(J ;D(Ω)
)
, (12)∥∥∥u− P khu∥∥∥

L2L2
≤ C0(h, k) ‖f‖L2L2 , ∀u ∈ V ∩ L2(J ;D(Ω)

)
, (13)

where

C1(h, k) :=
2

ν
CΩ(h) + Cinv(h)CJ(k), C0(h, k) =

8

ν
CΩ(h)2 + CJ(k).

If we set k = h2, since CΩ(h) = O(h), Cinv(h) = O(h−1), and CJ(k) = O(k), then
C1(h, k) = O(h) and C0(h, k) = O(h2). Therefore, the estimates (12) and (13) are
optimal order estimates with k = h2. However, these estimates are not optimal order
with k 6= h2, for example, in case of k = h.

Example 3.1 Let d = 1 and V 1
k

(
J ;Sh(Ω)

)
be the Q1 finite element space (i.e.,

spanned by piecewise bilinear basis functions [1, Section 3]), then Theorem 3.1 holds
for

C1(h, k) =
2

ν

h

π
+

√
12

h

k

π
, C0(h, k) =

8

ν

h2

π2
+
k

π
.

For example, h = k leads to C1(h, k) ≥
√

12
π

and C0(h, k) = O(h). These estimates
are not optimal order with k = h.

4 Optimal Order Error Estimates

In the following text, we derive the optimal order error estimates with k 6= h2.
Let P0 : L2(Ω)→ Sh(Ω) be an L2-projection satisfying for any u ∈ L2(Ω)

(u− P0u, vh)L2(Ω) = 0, ∀vh ∈ Sh(Ω).

Theorem 4.1 ([5, Theorem 4, 5]) Under Assumption 3.2, the following construc-
tive a priori error estimate holds:

‖u− Phu‖L2H1
0
≤ 2

ν
CΩ(h) ‖∆tu‖L2L2 , ∀u ∈ V ∩ L2(J ;D(Ω)

)
. (14)

‖u− Phu‖L2L2 ≤ 4CΩ(h) ‖u− Phu‖L2H1
0
, ∀u ∈ V. (15)

Here, we consider the following constructive a priori H1
0 -error estimates.

Theorem 4.2 (H1
0 -error estimates) Under Assumptions 3.2, 3.3, and that ∂

∂t
f ∈

L2(J ;L2(Ω)), the following inequality holds:∥∥∥u− P khu∥∥∥
L2H1

0

≤ CΩ(h)
2

ν
‖f‖L2L2 + CJ(k)

1√
2ν

√
‖f(·, 0)‖2L2(Ω) + ‖f‖2L2L2 +

∥∥∥∥ ∂∂tf
∥∥∥∥2

L2L2

≤ Ĉ1(h, k)

 2

ν
‖f‖L2L2 +

1√
2ν

√
‖f(·, 0)‖2L2(Ω) + ‖f‖2L2L2 +

∥∥∥∥ ∂∂tf
∥∥∥∥2

L2L2

 ,

where Ĉ1(h, k) := max{CΩ(h), CJ(k)}.
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Proof: From the triangle inequality, Theorem 4.1, and Assumption 3.3, we have∥∥∥u− P khu∥∥∥
L2H1

0

≤ ‖u− Phu‖L2H1
0

+ ‖Phu−ΠkPhu‖L2H1
0

≤ 2

ν
CΩ(h) ‖f‖L2L2 + CJ(k)

∥∥∥∥ ∂∂t∇(Phu)

∥∥∥∥
L2L2

. (16)

From (8) we have(
∂

∂t
Phu, vh

)
L2(Ω)

+ ν (∇(Phu),∇vh)(L2(Ω))d = (f, vh)L2(Ω) ,

∀vh ∈ Sh, t > 0, (17)

noting that Phu(0) = 0. Differentiating (17) by t and considering initial condition, we
have(

∂2

∂t2
Phu, vh

)
L2(Ω)

+ ν

(
∂

∂t
∇Phu,∇vh

)
(L2(Ω))d

=

(
∂

∂t
f, vh

)
L2(Ω)

,

∀vh ∈ Sh, t > 0, (18)

∂

∂t
Phu(0) = P0f(·, 0). (19)

By setting vh = ∂
∂t
Phu in (18), integrating from 0 to t with condition (19) yields∥∥∥∥ ∂∂tPhu

∥∥∥∥2

L2(Ω)

+ 2ν

∫ t

0

∥∥∥∥ ∂∂t∇Phu
∥∥∥∥2

L2(Ω)

dt

≤ ‖P0f(·, 0)‖2L2(Ω) +

∫ t

0

∥∥∥∥ ∂∂tf
∥∥∥∥2

L2(Ω)

dt+

∫ t

0

∥∥∥∥ ∂∂tPhu
∥∥∥∥2

L2(Ω)

dt (20)

Since ∥∥∥∥ ∂∂tPhu
∥∥∥∥2

L2(Ω)

+ ν
1

2

∂

∂t
‖∇Phu‖2L2(Ω)

=

(
∂

∂t
Phu,

∂

∂t
Phu

)
+ ν

(
∇Phu,∇

∂

∂t
Phu

)
(L2(Ω))d

=

(
f,
∂

∂t
Phu

)
,

we have ∫ t

0

∥∥∥∥ ∂∂tPhu
∥∥∥∥2

L2(Ω)

dt ≤
∫ t

0

‖f‖2L2(Ω) dt.

Thus taking notice of ‖P0‖L(L2(Ω),L2(Ω)) ≤ 1, we obtain from (20)

∥∥∥∥ ∂∂t∇(Phu)

∥∥∥∥
L2L2

≤ 1√
2ν

√
‖f(·, 0)‖2L2(Ω) + ‖f‖2L2L2 +

∥∥∥∥ ∂∂tf
∥∥∥∥2

L2L2

. (21)

Therefore, (16) and (21) prove the desired estimates.
Next, we consider the constructive a priori L2-error estimates. Here, we assume

that the following inequalities.
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Assumption 4.1 There exists a positive constant CJ(k) satisfying

‖u−Πku‖L2(J) ≤ CJ(k)2

∥∥∥∥ ∂2

∂t2
u

∥∥∥∥
L2(J)

, ∀u ∈ H2(J). (22)∥∥∥∥ ∂∂t (u−Πku)

∥∥∥∥
L2(J)

≤ CJ(k)

∥∥∥∥ ∂2

∂t2
u

∥∥∥∥
L2(J)

, ∀u ∈ H2(J). (23)

Theorem 4.3 (L2-error estimates) Under assumptions 3.2, 3.3, 4.1 and that
∂
∂t
f ∈ L2(J ;L2(Ω)) and f(·, 0) ∈ H1

0 (Ω), the following inequality holds:∥∥∥u− P khu∥∥∥
L2L2

≤ 8

ν
CΩ(h)2 ‖f‖L2L2 + CJ(k)2

√
ν ‖∇P0f(·, 0)‖2L2(Ω) +

∥∥∥∥ ∂∂tf
∥∥∥∥2

L2L2

≤ Ĉ0(h, k)

(
‖f‖L2L2 +

∥∥∥∥ ∂∂tf
∥∥∥∥
L2L2

+ ‖∇P0f(·, 0)‖L2(Ω)

)
,

where Ĉ0(h, k) := max

{
8

ν
CΩ(h)2,

√
νCJ(k)2, CJ(k)2

}
.

Proof: From the triangle inequality with Theorem 4.1 and Assumption 4.1, we have∥∥∥u− P khu∥∥∥
L2L2

≤ ‖u− Phu‖L2L2 + ‖Phu−ΠkPhu‖L2L2

≤ 8

ν
CΩ(h)2 ‖f‖L2L2 + CJ(k)2

∥∥∥∥ ∂2

∂t2
Phu

∥∥∥∥
L2L2

. (24)

By setting vh = ∂2

∂t2
Phu in (18) and integrating by t, we have∫ t

0

∥∥∥∥ ∂2

∂t2
Phu

∥∥∥∥2

L2(Ω)

dt+ ν

∥∥∥∥∇ ∂

∂t
Phu(t)

∥∥∥∥2

L2(Ω)

dt

≤ ν

∥∥∥∥∇ ∂

∂t
Phu(0)

∥∥∥∥2

L2(Ω)

+

∫ t

0

∥∥∥∥ ∂∂tf
∥∥∥∥2

L2(Ω)

dt

= ν ‖∇P0f(·, 0)‖2L2(Ω) +

∫ t

0

∥∥∥∥ ∂∂tf
∥∥∥∥2

L2(Ω)

dt. (25)

Here, we have used the fact that

∇ ∂

∂t
Phu(0) ≡ lim

t→0
∇ ∂

∂t
Phu(t) = ∇P0f(·, 0) ∈ (L2(Ω))d.

Therefore, combining (25) with (24), we have the desired result.
Now, to get the optimal-order V 1-estimates, we need the following lemma.

Lemma 4.1 Let u be a solution of (1). Assuming that ∂
∂t
f ∈ L2(J ;L2(Ω)) and

f(·, 0) ∈ H1
0 (Ω), the following inequalities hold.∥∥∥∥∆

∂

∂t
u

∥∥∥∥2

L2L2

≤ 2

ν2

(
2

∥∥∥∥ ∂∂tf
∥∥∥∥2

L2L2

+ ν ‖∇f(·, 0)‖2L2(Ω)

)
(26)
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Since the proof of this lemma follows by some standard arguments for the solution
of the equation (1) and its differentiated form in t, we omit it.

We now present the following optimal order V 1-error estimates.

Theorem 4.4 (V 1-error estimates) Under the same assumptions in Theorem 4.3,
we have the estimates

∥∥∥u− P khu∥∥∥
V 1L2

≤ 4CΩ(h)2

√
2

ν

{
2

∥∥∥∥ ∂∂tf
∥∥∥∥2

L2L2

+ ν ‖∇f(·, 0)‖2L2(Ω)

} 1
2

+ CJ(k)

{∥∥∥∥ ∂∂tf
∥∥∥∥2

L2L2

+ ν ‖∇P0f(·, 0)‖2L2(Ω)

} 1
2

. (27)

Proof: We only describe a sketch of the proof. As before, we use the following triangle
inequality:∥∥∥u− P khu∥∥∥

V 1L2
=

∥∥∥∥ ∂∂t (u− Phu+ Phu−ΠkPhu)

∥∥∥∥
L2L2

≤
∥∥∥∥ ∂∂t (u− Phu)

∥∥∥∥
L2L2

+

∥∥∥∥ ∂∂t (Phu−ΠkPhu)

∥∥∥∥
L2L2

. (28)

First, we estimate the first term in the right hand side of the above, which is done by
using techniques similar to that in the proof of Theorem 5 in [5].

We consider the following dual problem for the original equation (1)
∂w

∂t
+ ν∆w = et, in Ω× J,

w(x, t) = 0, on ∂Ω× J,
w(x, T ) = 0, in Ω,

(29)

where et := ∂
∂t

(u−Phu). By arguments analogous to those in [5], we have the following
estimates for the time derivative of error u− Phu:

‖et‖L2L2 ≤ 4CΩ(h)2

∥∥∥∥∆
∂

∂t
u

∥∥∥∥
L2L2

. (30)

Therefore, by using the estimate (26) in Lemma 4.1, we have the bound

∥∥∥∥ ∂∂t (u− Phu)

∥∥∥∥
L2L2

≤ 4CΩ(h)2

√
2

ν

{
2

∥∥∥∥ ∂∂tf
∥∥∥∥2

L2L2

+ ν ‖∇f(·, 0)‖2L2(Ω)

} 1
2

. (31)

On the other hand, the second term of the right hand side of (28) is estimated as

follows: By using the estimates (23) in the Assumption 4.1 and (25) for ∂2

∂t2
Phu, we

have ∥∥∥∥ ∂∂t (Phu−ΠkPhu)

∥∥∥∥
L2L2

≤ CJ(k)

∥∥∥∥ ∂2

∂t2
Phu

∥∥∥∥
L2L2

≤ CJ(k)

{
ν ‖∇f(·, 0)‖2L2(Ω) +

∥∥∥∥ ∂∂tf
∥∥∥∥2

L2L2

} 1
2

. (32)

Combining the estimates (31) and (32) with (28), we have the desired result.
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5 Numerical Examples

In this section, we show several numerical results by three kinds of proposed estimates
and two existing estimates. We set f to be the exact solution such that u(x, t) =
sin(πx) sin(πt) and parameter ν = 1. In these examples, we used the finite element
subspaces Sh(Ω) and V 1

k (J) spanned by piecewise linear basis functions with uniform
mesh size h and k, respectively. Since the exact solutions are known, the upper bounds
of the exact errors for approximate solutions can be validated in the a posteriori sense.

All computations are carried out on MATLAB R12a by using INTLAB 9 [8] to
take care of rounding errors. INTLAB is a MATLAB toolbox for interval arithmetic.

Tables 1 - 2 illustrate the results of L2(J ;H1
0 (Ω)) error estimates, namely, Theo-

rem 5.5 in [4], Theorem 4.2, and L2(J ;H1
0 (Ω)) norm of exact error. These tables show

the estimates presented in Theorem 4.2 give the optimal order O(h), even if the mesh
size k 6= h2, but k = h.

Table 1: L2(J ;H1
0 (Ω)) error estimates for k = h2. u(x, t) = sin(πx) sin(πt)

Theorem 5.5 in [4] Theorem 4.2 exact
error error error

h C1(h, k) bound Ĉ1(h, k) bound

1/2 0.870 4.50 0.1592 2.62 0.690
1/4 0.435 2.25 0.0796 1.07 0.353
1/8 0.217 1.13 0.0398 0.48 0.178
1/16 0.109 0.57 0.0199 0.22 0.089

Table 2: L2(J ;H1
0 (Ω)) error estimates for k = h. u(x, t) = sin(πx) sin(πt)

Theorem 5.5 in [4] Theorem 4.2 exact
error error error

h C1(h, k) bound Ĉ1(h, k) bound

1/2 1.42 7.36 0.1591 3.59 0.752
1/4 1.26 6.53 0.0796 1.79 0.362
1/8 1.18 6.12 0.0398 0.90 0.179
1/16 1.14 5.92 0.0199 0.45 0.090

Next, Tables 3 - 4 illustrate the results of L2(J ;L2(Ω)) error estimates, namely,
Theorem 5.6 in [4], Theorem 4.3, and L2(J ;L2(Ω)) norm of exact error. These tables
show the L2-error estimates in Theorem 4.3 also present the optimal order O(h2)
independent of mesh size for space and time directions. This optimality comes from the
well known interpolation theory on the approximation by piecewise linear functions [7].

Finally, Tables 5 - 6 show the results of V 1(J ;L2(Ω)) error estimates namely,
Theorem 4.4 and V 1(J ;L2(Ω)) norm of exact error. These tables confirm that we can
also attain the optimal order error estimates for V 1-error, which is actually O(h2) if
we take mesh size as k = h2. We can say this fact exceeds our usual expectation.
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Table 3: L2(J ;L2(Ω)) error estimates for k = h2. u(x, t) = sin(πx) sin(πt)

Theorem 5.6 in [4] Theorem 4.3 exact
error error error

h C0(h, k) bound Ĉ0(h, k) bound

1/2 0.282 1.460 0.2026 1.0800 1.23E-01
1/4 0.071 0.365 0.0507 0.2640 2.83E-02
1/8 0.018 0.092 0.0127 0.0657 6.86E-03
1/16 0.004 0.023 0.0032 0.0164 1.70E-03

Table 4: L2(J ;L2(Ω)) error estimates for k = h. u(x, t) = sin(πx) sin(πt)

Theorem 5.6 in [4] Theorem 4.3 exact
error error error

h C0(h, k) bound Ĉ0(h, k) bound

1/2 0.362 1.870 0.2026 1.1700 1.82E-01
1/4 0.130 0.674 0.0507 0.2931 5.06E-02
1/8 0.053 0.272 0.0127 0.0732 1.30E-02
1/16 0.024 0.119 0.0032 0.0183 3.27E-03

Table 5: V 1(J ;L2(Ω)) error estimates for k = h2. u(x, t) = sin(πx) sin(πt)

Theorem 4.4 exact
error error

h bound

1/2 4.88E+00 4.56E-01
1/4 1.21E+00 1.16E-01
1/8 3.03E-01 2.91E-02
1/16 7.58E-02 7.28E-03

Table 6: V 1(J ;L2(Ω)) error estimates for k = h. u(x, t) = sin(πx) sin(πt)

Theorem 4.4 exact
error error

h bound

1/2 6.31E+00 7.34E-01
1/4 2.28E+00 3.60E-01
1/8 9.20E-01 1.79E-01
1/16 4.06E-01 8.91E-02
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6 Conclusion

The error estimates presented here are sharper than the existing estimates in [4].
Particularly, the optimal order V 1 estimates are considered as a special advantage
from the fact that we used the approximation scheme in the time direction by using
the fundamental matrix for ODE corresponding to semidiscretization in space.
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