
Verified Inclusion of a Basis of the Null space∗†

R. Kobayashi
Faculty of Science and Engineering, Waseda Univer-
sity, 3–4–1 Okubo, Shinjuku–ku, Tokyo 169–8555,
Japan

r.kobayashi@thu.ac.jp

M. Lange
Institute for Reliable Computing, Hamburg University
of Technology, Am Schwarzenberg Campus 3, Ham-
burg 21071, Germany

m.lange@tuhh.de

A. Minamihata‡
Department of Information and System Engineering,
Chuo University, 1–13–27 Kasuga, Bunkyo–ku, Tokyo
112–8551, Japan

minamihata.71e@g.chuo-u.ac.jp

S.M. Rump
Institute for Reliable Computing, Hamburg Univer-
sity of Technology, Am Schwarzenberg Campus 3,
Hamburg 21071, Germany, and Visiting Professor
at Waseda University, Faculty of Science and Engi-
neering, 3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555,
Japan

rump@tuhh.de

Abstract

We describe methods to compute a verified inclusion of a basis of the
null space of a rectangular, real or complex matrix. The quality of the
inclusion correlates with the ratio of the largest and smallest singular
value of the input matrix. Some executable INTLAB routines are given.

Keywords: Null space, orthogonal basis, verified inclusion, INTLAB

AMS subject classifications: 65G40, 15A06

∗This research was partially supported by CREST, Japan Science and Technology Agency.
†Submitted: October 12, 2019; Revised: May 20, 2020; Accepted: July 23, 2020.
‡This work was supported by JSPS KAKENHI Grant Number JP17K12692

26

r.kobayashi@thu.ac.jp
m.lange@tuhh.de
minamihata.71e@g.chuo-u.ac.jp
rump@tuhh.de

Reliable Computing 27, 2020 27

1 Notation and previous work

Let a rectangular matrix A ∈ Km×n with m < n and K ∈ {R,C} be given.
We aim to compute an inclusion of a basis of the null space of A.

We assume some familiarity by the reader with interval arithmetic [5, 8]
and verification methods [10, 14]. Interval quantities are in bold-face, and an
interval matrix A is said to have full rank if all A ∈ A have that property.

If the null space of A has dimension k, then the right singular vectors to the k
smallest singular values of A form an orthonormal basis of null(A). One obvious
way to obtain an inclusion of such a basis is to compute a verified inclusion of
the respective singular vectors.

If A is rank deficient, then an ε-perturbation may change its rank and there-
fore the dimension of null(A). Hence the problem becomes ill-posed. As veri-
fication methods are restricted to well-posed problems [14], a verified inclusion
of the null space is, except for exotic cases, only possible if A has full rank.

In [11], Rohn presented a verification method to compute an inclusion of
a matrix, the range of which spans the null space of A. His method is based
on a verified inclusion B of the Moore-Penrose pseudoinverse A† of A. Then
N = I − BA contains a matrix whose range is identical to the null space of
A. In order to compute B, Rohn considers three methods based on A† =
(A∗A)−1A∗, on Greville’s algorithm [3], and on a verified inclusion of a singular
value decomposition of A, respectively.

In the following we want to improve on this by giving another four different
methods for computing an inclusion of a basis of the null space of A.

2 Main result

Let a matrix A ∈ Km×n with m < n be given, and let A∗ = QR be a QR-
decomposition of the Hermitian of A. Denote by 0p,q and Ip,q the p × q zero
and identity matrix, respectively. We consider the block structure

A∗ = QR =
(
Q1 Q2

)(R1

0n−m,m

)
,

where Q1 ∈Kn×m, Q2 ∈Kn×(n−m), and R1 ∈Km×m. Then A∗ = Q1R1, and
if A has full rank, then Q2 is an orthogonal basis of the null space of A.

2.1 Enclosure for underdetermined linear systems

An approximate QR-decomposition of A∗ produces a numerical basis Q̃2 for
the null space of A. Suppose that A has full rank and that E is a solution to
the underdetermined linear system AE = AQ̃2. Define X := Q̃2 − E. Then
AX = 0 and X is a basis of the null space of A provided X has also full rank.
The latter is implied by ‖E‖2 ≤ σmin(Q̃2) which in turn can be verified by
checking that ‖E‖22 ≤ 1 − ‖Q̃T2 Q̃2 − I‖2. To reduce the computational effort,
we use the Frobenius norm as an upper bound for the spectral norm. Using

28 R. Kobayashi et al., Inclusion of null space

INTLAB [12], the Matlab/Octave toolbox for Reliable Computing, a code to
compute an inclusion X of X can be as follows:

[Q,~] = qr(mid(A)’);

Q2 = Q(:,m+1:n);

B = A*intval(Q2);

E = verifylss(A,B);

X = Q2 - E;

success = (norm(E,’fro’).^2 < 1 - ...

norm(Q2 ’* intval(Q2)-eye(n-m),’fro’));

Method 1: Solving an underdetermined linear system.

Here the function verifylss returns an enclosure for solutions of underde-
termined systems or least squares problems (see [15]). A basis of the null
space of A is included in X if the latter has full rank, which is verified by
‖E‖2F < 1− ‖Q̃T2 Q̃2 − I‖F . That final verification step is necessary because, in
principle, Q̃2 − E could be rank deficient.

It is noteworthy that the code is applicable for real or complex interval
matrices A as well. In that case for every Ã ∈ A there exists some X ∈ X such
that X is a basis of the null space of Ã.

2.2 Square linear system embedding

For a null space of small dimension we next exploit the extended abilities of
INTLAB to solve square linear systems. Let A ∈ Km×n, α ∈ K and B ∈
K(n−m)×n be such that the square matrix

Mα :=

(
A
αB

)
is nonsingular. This is not satisfiable if A or B are rank deficient, or α = 0. A
solution X ∈Kn×(n−m) to the square linear system(

A
αB

)
X =

(
0m,n−m

αIn−m,n−m

)
(1)

specifies a basis of the null space of A. Thus, to compute a basis of null(A), we
need to find appropriate α and B.

If we set B := Q∗2, then the solution to (1) is X = Q2, an orthogonal
basis of null(A). In practice we have only an approximate Q̃2 for this solution
and set B = Q̃2. The corresponding linear system in (1) can be tackled by
some verification method for square linear systems [7, 8, 15, 18]. The successful
completion of any of these verification methods also proves that the system
matrix Mα is regular, which in turn implies that A as well as X have full rank.

The singular values of Mα with B := Q∗2 are σi(A) and an (n − m)-fold
singular value α. Thus, choosing α within the interval [σm(A), σ1(A)] ensures
that the condition numbers, the ratio of the largest and smallest singular value,

Reliable Computing 27, 2020 29

of A and Mα are the same. The described approach can be realized, for instance,
via the following INTLAB code:

[Q,~] = qr(mid(A)’);

alpha = max(vecnorm(A,2 ,2));

Ma = [A; alpha*Q(:,m+1:n)’];

b = [zeros(m,n-m); alpha*eye(n-m)];

X = verifylss(Ma ,b);

Method 2: Solving an extended square linear system.

Here vecnorm(A,2,2) computes the vector of Euclidean lengths of the rows of
A. As already mentioned above, the successful application of verifylss not
only yields a verified interval enclosure for an actual basis of null(A) but also
implies that Mα and A have full rank.

For extremely ill-conditioned problems, X = verifylss(Ma,b,’illco’) may
be used [13]. The general idea behind this method is similar to the precondi-
tioning approach that we propose in Subsection 3.1.

To save computing time, one may exploit the already computed (approxi-
mate) QR-decomposition together with the identity

Mα (Q1(R∗1)−1 α−1Q2) =

(
R∗1Q

∗
1

αQ∗2

)
(Q1(R∗1)−1 α−1Q2) = In.

Thus, an approximate inverse of Mα can be obtained at the cost of solving nu-
merically a linear system with matrix R1 and right-hand side Q∗1. Then classical
inclusion methods such as the Kahan-Krawczyk operator [4, 6], Yamamoto’s ap-
proach [18], or methods based on H-matrices [7, 15] can be used.

2.3 Square linear system reduction

In contrast to the embedding discussed in the previous subsection, our third
method is based on the reduction of the underdetermined system AX = 0 to a
smaller square linear system. The benefit of this approach is that it does not
require a QR-decomposition. The first step is to choose a permutation matrix
P so that AP =

(
A1 A2

)
with nonsingular A1 ∈ Km×m. That is possible

for any A that has full rank. The standard choice is based on an approximate
LU -decomposition of A∗. To be precise, let

P ∗A∗ =

(
L1

L2

)
U

be an LU -decomposition with partial pivoting, such that, provided A has full
rank, L1 ∈Km×m and U ∈Km×m are regular triangular matrices. Then, using
the same P , the first m columns of AP are linearly independent and A1 = U∗L∗1
is regular.

30 R. Kobayashi et al., Inclusion of null space

We consider a similar permuted block structure of a solution X ∈Kn×(n−m)

to AX = 0, by which

A ·X =
(
A1 A2

)
P ∗︸ ︷︷ ︸

=:A

·P
(
X1

X2

)
︸ ︷︷ ︸

=:X

= A1X1 +A2X2 = 0.

The computation of X can therefore be reduced to choosing an appropriate
X2 ∈ K(n−m)×(n−m) and computing the corresponding X1 ∈ Km×(n−m) by
solving A1X1 = −A2X2. A natural choice for X2 is In−m,n−m. This ensures
full rank of X, simplifies the overall computation and leads to the following
desired basis of the null space of A:

X = P

(
−A−11 A2

In−m,n−m

)
.

This particular choice is often called the fundamental basis [1, 17].
Once more we can utilize a standard verification method for square linear

systems to compute a verified enclosure for the matrix X given above. In
INTLAB the code can be as follows:

[~,~,p] = lu(mid(A)’,’vector ’);

X = [verifylss(A(:,p(1:m)),-A(:,p(m+1:n))); eye(n-m)];

X = X(invperm(p),:);

Method 3: Solving a reduced square linear system.

Here the function invperm returns the inverse permutation. Note that the only
purpose of the LU -decomposition in the first line is to compute an appropriate
permutation vector p.

The computational effort for the third method is smaller than for the previ-
ous two methods as the size of the system matrix is m×m rather than m× n
or n × n, respectively. However, the computed basis is typically not close to
orthogonality.

It is noteworthy that Method 3 can be interpreted as a special case of the
method based on the linear system (1). If we assume that X2 is regular, then
for B =

(
0n−m,m X−12

)
P ∗, the linear system in (1) yields

Mα ·X =

(
A1 A2

0n−m,m αX−12

)
P ∗ ·X =

(
A1X1 +A2X2

αX−12 X2

)
=

(
0m,n−m

αIn−m,n−m

)
.

The particular choice of B motivates a reduction of (1) to the linear system
discussed in this subsection.

Naturally, a similar reduction is applicable for the choice B := Q+
2 = Q∗2.

By applying a similar partitioning as above to Q2, we derive Q∗2P =
(
Q21 Q22

)
,

where Q12 ∈ Kn−m×m and Q22 ∈ Kn−m,n−m. If we now set X2 := Q22, then
X1 = Q21 is the solution to the system A1X1 = −A2X2, which yields the desired
orthogonal representation of the null space of A. The corresponding INTLAB
code could be as follows:

Reliable Computing 27, 2020 31

[~,~,p] = lu(mid(A)’,’vector ’);

[A1 ,A2] = deal(A(:,p(1:m)),A(:,p(m+1:n)));

[Q,~] = qr(mid(A)’);

Q22 = Q(p(m+1:n),m+1:n);

B1 = A2*intval(-Q22);

X = [verifylss(A1 ,B1); Q22];

X = X(invperm(p),:);

success = (norm(mid(X)’*X-eye(n-m),inf) < 1);

Method 4: Solving a reduced square linear system.

In the ideal case, Methods 2 and 4 produce enclosures for the same solution
X = Q2. In practice we use an approximation Q̃2. Then Method 4 computes
an inclusion for a solution X that is rather comparable with a solution to (1)
with B := Q̃+

2 instead of B := Q̃∗2.

The additional cost for this nearly orthogonal solution is theQR-decomposition
of A and the necessity to check non-singularity of X because Q̃22 may be rank-
deficient.

2.4 Rohn’s Method

As an alternative to the previously proposed methods and to have comparative
data for our numerical tests, we consider Rohn’s verification approach [11].
To be specific, we consider Rohn’s vernull function from the VERSOFT 10
package, which does the following. If successful, for given m × n matrix A an
n×n interval matrix W is computed with the property that there exists W ∈W
such that {Wy : y ∈ Rn} spans the null space of A. It follows rank(W) = n−m;
however, as Rohn notes in the comments to vernull, it was not clear to him
how to compute an inclusion of a basis of the null space of A.

One possibility to obtain a basis of null(A) from W is as follows. If a
submatrix X of n −m columns of W can be identified such that every matrix
within X has full rank, then X is a verified inclusion of a basis of null(A). To
find appropriate columns we perform an LU -decomposition of the transposed
midpoint matrix of W resulting in a partial pivoting vector p. We then choose
columns p1 to pn−m of W according to the pivoting result. The corresponding
VERSOFT/INTLAB code could be as follows:

[W,~] = vernull(A);

[~,~,p] = lu(mid(W)’,’vector ’);

X = W(:,p(1:n-m));

Method 5: Rohn’s Method with columns reduction.

Here we skipped the code for checking regularity of X. It is noteworthy that
vernull does not support interval input data. In contrast to the previously
proposed methods, here we are restricted to point data.

32 R. Kobayashi et al., Inclusion of null space

Another way is to compute an approximate eigendecomposition of a matrix
close to the midpoint of W by [V,D] = eig(mid(W)), to choose the set J of
indices of n−m largest eigenvalues, and to set X = W*V(:,J). If X has full rank,
then it is an inclusion of a basis of null(A). The benefit of this method is that
X can be expected to be nearly orthogonal because Rohn’s method produces a
(nearly) Hermitian enclosure W. To be on the safe side it is better to compute
the approximate eigendecomposition of the Hermitian part of the midpoint of
W. A VERSOFT/INTLAB implementation of this approach could look like
this:

[W,~] = vernull(A);

[V, D] = eig(mid(W) + mid(W)’);

[~,J] = sort(diag(D),’descend ’);

X = W*V(:,J(1:n-m));

Method 6: Rohn’s Method, projection of linear subspace.

As before, we skipped the code for checking regularity of X.

3 On the accuracy of enclosures of a basis of the
null space

The accuracy of an inclusion obtained by Method 1 depends on the condition
number of A, the accuracy of the computation of the residual product AQ̃2,
and the quality of the approximate Q̃2. It is noteworthy that, without an
accurate computation of the residual product, the condition number affects the
accuracy of the inclusion in two ways: once within the verification process by
verifylss, and also in the evaluation of AQ̃2. Nevertheless, even with a very
good approximate Q̃2 for a basis of the null space of A and computing the
right-hand side AQ̃2 with high accuracy, the accuracy of the inclusion is still
restricted by the condition of A.

Another major drawback of Method 1 is the dependency on the quality of
the initial approximate Q̃2 for Q2. The main reason for this dependency is
that verifylss computes an inclusion of the actual minimum 2-norm solution.
This prevents INTLAB to apply an (internal) residual iteration which is usually
applied when solving square systems. In our application only an inclusion of
some basis of null(A) is desired and thus a residual iteration as in the square
case is eligible but would require a different implementation.

Method 2 circumvents this problem by the embedding into a larger square
linear system. Due to the implementation of verifylss that applies appropriate
residual iterations, the accuracy of the results computed with Method 2 is mainly
restricted by the accuracy of the internal computations within INTLAB. These,
in turn, are of course also influenced by the condition number of A but, as we
will see in the next section, to a smaller extent than the direct computations in
Method 1.

Reliable Computing 27, 2020 33

By a similar argument, the quality of initial approximations, such as (in-
ternal) preconditioners, have a relatively small influence on the accuracy of the
enclosures computed by our third method. In contrast to Method 2, however,
this approach could suffer from ill-conditioned solution matrices X. If the actual
solution X is ill-conditioned, then even tight enclosures of X can be unusable
for describing the null space of A.

Nevertheless, in practice, the basis produced by Method 3 can be expected
to be well-conditioned. To see that consider the partially pivoted block LU-
decomposition from the previous subsection:

P ∗A∗ =

(
A∗1
A∗2

)
=

(
L1

L2

)
U,

where L1 ∈ Km×m, L2 ∈ K(n−m)×m, and U ∈ Km×m. We already discussed
the regularity of L1, U and A1 = U∗L∗1. Together with the identity A∗2 =
L2U , it is straightforward to show −X1 = A−11 A2X2 = (U∗L∗1)−1(U∗L∗2)X2 =
(L∗1)−1L∗2X2 (c.f. [2]). Moreover, partial pivoting implies that the absolute value
of all entries of L1 and L2 does not exceed 1, and a well accepted rule of thumb

implies that L1 is well-conditioned. By ‖X1‖2 ≤ cond (L1)‖L2‖2
‖L1‖2 ‖X2‖2, it then

follows that ‖X1‖2 is of reasonable size as long as the same is true for ‖X2‖2.
For the specific choice X2 = In−m,n−m, it follows ‖X2‖2 = 1 and σmin(X) ≥ 1.
Hence, ‖X1‖2 can be expected to be of the size of cond (L1), i.e., small, and

cond (X) =
‖X‖2
σmin(X)

≤ ‖X‖2 =
√

1 + ‖X1‖22

can be expected to be small as well. The computed basis X of the null space
of A is typically not too ill-conditioned, and the accuracy of the result can be
expected to be similar as for Method 2.

If a (nearly) orthogonal basis is desired, then Method 3 can be modified
as described in the corresponding subsection. The accuracy of the inclusion
obtained via Method 4 additionally depends an the accuracy of the computed
right-hand side A2Q̃22 and can therefore be expected to be slightly lower than
with Method 3.

3.1 Improving the accuracy

The accuracy of the computed inclusion is limited by the weakest link in the cor-
responding algorithm. If verifylss allows for a highly accurate solution of the
respective linear system but the inclusion of A2Q̃22 in Method 4 is comparably
poor, then also the accuracy of the returned basis will be poor. To circumvent
this issue, intermediate computations should be done with higher precision. The
algorithm “poor men’s residual” introduced in INTLAB’s lssresidual seems
to be a good trade-off between accuracy and computational effort.

To apply the improved residual computation to Method 1, we exchange the
products on the left-hand sides of the linear systems in Methods 1 and 4 by their
lssresidual equivalents. This is the first method to improve the accuracy of

34 R. Kobayashi et al., Inclusion of null space

Methods 1 and 4. More precisely, the code is modified according to the following
table.

Method original code replaced by
1 B = A*intval(Q2); B = lssresidual(A,-Q2);

4 B1 = A2*intval(-Q22); B1 = lssresidual(A2,Q22);

Table 1: Improved accuracy of left-hand sides: Method 1 → 1’, Method 4 → 4’.

The other proposed Methods 2 and 3 do not suffer from inaccurate intermediate
computations. There, the accuracy of the linear system solver verifylss is the
limiting factor.

For a further improvement of the accuracy, we need to transform the prob-
lem to an easier equivalent one. A typical approach is the use of a suitable
preconditioning matrix such as S :≈ (R̃∗1)−1. Since the quality of the interval
enclosure for SA derived via interval arithmetic still depends on the condition
number of A, it is important to compute the product SA using accurate dot
products, for example, based on error-free transformations [9, 16].

Let verifynull implement any of our proposed methods, then an INTLAB
code for improving the accuracy could be as follows.

[~,R] = qr(A’);

S = inv(R(1:m,:)’);

C = AccDot(S,A ,[]);

X = verifynull(C);

Preconditioning approach to improve the accuracy of any of our methods.

The call of AccDot with last input parameter [] returns an accurate inclusion
of SA using methods based on error-free transformations, cf. [9, 16]. In contrast
to the first improvement, this applies to all our proposed methods.

The condition number of the interval matrix C is typically much better
than the condition of the original system. The matrix C contains a matrix
with the same null space as A provided that the preconditioner S is regular. A
verification of this property is not necessary since our methods validate the full
rank of all C ∈ C, which in turn implies the regularity of S. In the following we
will refer to methods with accurate preconditioning as Method 1”, 2”, 3” and
4”, respectively.

An alternative approach to improve the accuracy of the computed inclusion is
a residual iteration, where the residual is computed using accurate dot products.
That is in particular more efficient if the dimension of null(A) is relatively small.
Again this applies to all our proposed methods. Exemplary, the respective
modification of our third method could be as follows:

[~,~,p] = lu(A’,’vector ’);

b = A(:,p(m+1:n));

x = A(:,p(1:m))\b;

res = AccDot(1,b,A(:,p(1:m)),-x ,[]);

Reliable Computing 27, 2020 35

X = [x+verifylss(A(:,p(1:m)),res); eye(n-m)];

X = X(invperm(p),:);

Another accuracy improvement for Method 3.

Moreover, L and U could be used to improve the initial x.

4 Numerical results

We generate a random m×n matrix A with predefined condition number cnd by
gallery(’randsvd’,[m,n],cnd) and compute a verified inclusion X of a basis
of null(A) by the four proposed methods and the two methods derived from
Rohn’s vernull algorithm. To measure the accuracy of an enclosure X for a
basis to the null space of A, we use the maximal error of the column vectors of
X, i.e.,

acc(X) := max
k

‖rad (X∗k)‖2
‖m(()X∗k)‖2

.

In the following tables, the accuracy of the verified basis obtained by our four
standard methods and the two proposed methods based on Rohn’s vernull

is denoted by acc1 till acc6, respectively. The computing times are denoted
accordingly by t1 till t6. Moreover, we use ’ and ” to refer to the methods with
the respective first and second improvement discussed in Subsection 3.1. For
each test case, 100 samples were computed and the median is displayed. If the
relative error is larger than 1 or the proof of regularity fails, then the computed
inclusion gives hardly any useful information about the null space of A and the
verification is considered to be failed. We use “–” to denote this case.

Table 2 suggests that the methods can be ordered according to the accuracy
of the computed inclusions. The best results are obtained with Method 2, closely
followed by Method 3. A possible reason for the slight difference in accuracy
between these two methods is the typically increased condition number of the
smaller system matrix. With a noticeable drop in accuracy the Methods 1,
4, 5 and 6 follow in order. For the samples with condition number 1014 and
n ≥ 500, a full rank of the computed inclusions could be verified only for
Methods 2 and 3. All other approaches failed. Moreover, for ill-conditioned
problems with condition number greater or equal to 1010 the relative accuracy
of an inclusion computed by Rohn’s method is larger than 1, thus giving no
information about the null space except that A has full rank. For the reason
above, we consider these cases as failures and use “–” to denote them.

The picture changes significantly if the improvements discussed in Subsec-
tion 3.1 are applied. In Table 3 we compare the accuracy results for our proposed
methods with the respective improvements. The Methods 5 and 6 are missing
in the table because Rohn’s vernull function is not applicable to interval input
so that the preconditioning approach cannot be used.

Using the accurate preconditioning approach, all methods provide more or
less the same high accuracy with only minor differences. If the product AQ̃2

in Method 1 is evaluated in higher precision, then the accuracy is comparable

36 R. Kobayashi et al., Inclusion of null space

m n cnd acc1 acc2 acc3 acc4 acc5 acc6
50 100 105 8.2e-11 2.2e-14 4.1e-14 1.6e-10 3.0e-09 9.5e-09
50 100 1010 5.5e-06 1.4e-09 2.6e-09 1.1e-05 – –
50 100 1014 5.4e-02 1.2e-05 2.4e-05 9.8e-02 – –
50 200 105 1.4e-10 4.1e-14 4.8e-14 6.1e-10 4.2e-09 2.0e-08
50 200 1010 9.7e-06 2.8e-09 3.6e-09 4.5e-05 – –
50 200 1014 1.2e-01 2.6e-05 3.2e-05 – – –
50 500 105 2.1e-10 4.2e-14 5.3e-14 1.6e-09 2.8e-09 2.2e-08
50 500 1010 1.4e-05 2.7e-09 3.9e-09 1.1e-04 – –
50 500 1014 – 2.4e-05 3.6e-05 – – –
50 1000 105 2.0e-10 6.1e-14 5.7e-14 2.1e-09 2.4e-09 2.5e-08
50 1000 1010 1.4e-05 3.5e-09 4.1e-09 1.6e-04 – –
50 1000 1014 – 2.9e-05 3.7e-05 – – –

100 200 105 2.0e-10 5.7e-14 1.2e-13 4.8e-10 7.7e-09 3.7e-08
100 200 1010 1.2e-05 3.4e-09 7.6e-09 3.0e-05 – –
100 200 1014 1.5e-01 2.9e-05 6.8e-05 – – –
100 500 105 3.2e-10 6.8e-14 1.5e-13 2.1e-09 6.8e-09 6.1e-08
100 500 1010 2.0e-05 3.9e-09 9.9e-09 1.4e-04 – –
100 500 1014 – 3.6e-05 9.6e-05 – – –
100 1000 105 3.1e-10 7.8e-14 1.6e-13 3.0e-09 5.6e-09 7.1e-08
100 1000 1010 1.9e-05 4.5e-09 1.0e-08 1.9e-04 – –
100 1000 1014 – 3.6e-05 1.1e-04 – – –
200 500 105 5.0e-10 1.1e-13 4.4e-13 2.1e-09 2.1e-08 1.9e-07
200 500 1010 2.8e-05 6.2e-09 2.7e-08 1.3e-04 – –
200 500 1014 – 7.0e-05 4.7e-04 – – –
200 1000 105 5.3e-10 1.1e-13 5.1e-13 4.6e-09 1.7e-08 2.3e-07
200 1000 1010 3.0e-05 6.1e-09 3.1e-08 2.8e-04 – –
200 1000 1014 – 7.2e-05 6.5e-04 – – –

Table 2: Relative errors of inclusions obtained by our Methods 1-4 and Rohn’s Meth-
ods 5-6.

to the results for Methods 2 and 3. By the same approach also the accuracy of
Method 4 is increased significantly, providing useful inclusions for all our test
samples. Nevertheless, in comparison to Methods 2 and 1’, the accuracy of
Method 4’ still falls behind by two magnitudes.

An accurate residual iteration as discussed at the end of Subsection 3.1 can
improve the accuracy even further. However, for the tested dimensions the accu-
rate residual computation is more expensive than the preconditioning approach
which already produces highly accurate enclosures for a basis of the null space.
As mentioned before, the accurate residual iteration is only sensible for null
spaces with comparably small dimensions. Since this approach involves further
specific adaptations for each of our methods, we refrain from presenting numer-
ical results for accuracy improvements based on accurate residual iterations.

Reliable Computing 27, 2020 37

m n cnd acc1’ acc4’ acc1” acc2” acc3” acc4”
50 100 105 2.1e-14 5.1e-12 1.6e-14 2.8e-14 2.7e-14 4.7e-14
50 100 1010 1.3e-09 3.7e-07 1.6e-14 2.8e-14 2.8e-14 4.9e-14
50 100 1014 1.4e-05 3.3e-03 1.6e-14 2.8e-14 2.7e-14 4.8e-14
50 200 105 4.0e-14 7.2e-12 2.3e-14 5.6e-14 3.0e-14 9.9e-14
50 200 1010 2.8e-09 5.1e-07 2.3e-14 5.6e-14 3.1e-14 1.0e-13
50 200 1014 3.1e-05 4.6e-03 2.3e-14 5.6e-14 3.0e-14 9.9e-14
50 500 105 3.8e-14 9.8e-12 3.1e-14 9.7e-14 3.1e-14 2.0e-13
50 500 1010 2.5e-09 7.2e-07 3.1e-14 9.7e-14 3.1e-14 2.0e-13
50 500 1014 4.2e-05 7.0e-03 3.1e-14 9.7e-14 3.1e-14 1.9e-13
50 1000 105 4.1e-14 1.1e-11 2.8e-14 9.5e-14 3.1e-14 2.5e-13
50 1000 1010 2.6e-09 8.2e-07 2.8e-14 9.5e-14 3.0e-14 2.5e-13
50 1000 1014 4.5e-05 7.7e-03 2.8e-14 9.5e-14 3.1e-14 2.5e-13

100 200 105 5.4e-14 7.6e-12 4.1e-14 7.3e-14 8.6e-14 1.6e-13
100 200 1010 3.1e-09 5.0e-07 4.1e-14 7.3e-14 8.5e-14 1.6e-13
100 200 1014 3.8e-05 4.9e-03 4.1e-14 7.3e-14 8.5e-14 1.6e-13
100 500 105 6.3e-14 1.2e-11 5.8e-14 1.5e-13 9.7e-14 3.5e-13
100 500 1010 3.7e-09 8.0e-07 5.8e-14 1.5e-13 9.9e-14 3.6e-13
100 500 1014 6.6e-05 8.0e-03 5.8e-14 1.5e-13 9.8e-14 3.6e-13
100 1000 105 6.0e-14 1.4e-11 5.4e-14 1.6e-13 9.9e-14 4.7e-13
100 1000 1010 3.5e-09 9.9e-07 5.4e-14 1.6e-13 9.8e-14 4.7e-13
100 1000 1014 7.4e-05 1.0e-02 5.4e-14 1.6e-13 9.9e-14 4.7e-13
200 500 105 1.1e-13 1.3e-11 1.1e-13 2.1e-13 3.0e-13 6.3e-13
200 500 1010 5.9e-09 8.0e-07 1.1e-13 2.1e-13 3.0e-13 6.4e-13
200 500 1014 1.5e-04 – 1.1e-13 2.1e-13 3.0e-13 6.3e-13
200 1000 105 1.0e-13 1.8e-11 1.1e-13 2.7e-13 3.3e-13 9.7e-13
200 1000 1010 5.8e-09 1.1e-06 1.1e-13 2.7e-13 3.2e-13 9.6e-13
200 1000 1014 2.2e-04 – 1.1e-13 2.7e-13 3.2e-13 9.6e-13

Table 3: Accuracy results for our proposed methods with applied improvements.

In the numerical tests of our proposed verification methods, we did not
observe a correlation between the computing time and the condition number of
A. For the comparison of computing times in Table 4, we therefore restrict the
presentation to the samples with condition number 105 for which all discussed
methods produce useful enclosures for a basis of the null space. We display
the ratio of the corresponding computing times with respect to Method 3, the
fastest of the proposed methods.

By t5 we do not refer to the complete computing time of Method 5 but
only to the time taken by Rohn’s vernull function. This is the reason why
the computing times for Method 6 are omitted from the table. The MATLAB
implementation AccDot has a significant interpretation overhead and dictates
the overall running time. In this context, t1” serves as a representative for
the computing times t2”, t3” and t4” which are all very similar. Without

38 R. Kobayashi et al., Inclusion of null space

m n t1 t2 t4 t5 t1’ t4’ t1”
50 100 8.0 4.6 2.1 52.7 8.6 2.2 292.6
50 200 3.6 2.0 1.8 16.4 3.8 1.9 144.0
50 500 10.5 7.0 3.1 28.9 10.7 3.2 235.4
50 1000 25.7 20.1 5.1 59.9 26.0 5.5 305.2

100 200 2.3 1.2 1.6 14.0 2.5 1.7 174.0
100 500 7.8 4.8 2.5 26.1 8.0 2.6 334.0
100 1000 17.7 12.9 3.5 45.6 18.0 3.7 404.7
200 500 6.4 3.2 2.0 27.2 6.6 2.1 548.0
200 1000 10.4 6.8 2.3 30.3 10.7 2.4 455.2

Table 4: Computing times relative to t3.

that significant interpretation overhead the computing times would be more
competitive. In this scenario, however, the preconditioning makes sense only
for extremely ill-conditioned matrices A.

Compared to the computational overhead of the accurate preconditioning,
the impact of the lssresidual calls in Methods 1’ and 4’ is rather small. Con-
sidering the significantly improved accuracy results presented in Table 3, it
seems to be generally beneficial to choose Methods 1’ and 4’ over their unmod-
ified counterparts. Moreover, for some reason verifylss solves the embedding
square linear system of Method 2 more efficiently than the smaller underdeter-
mined linear system of Method 1. Since the former produces more accurate re-
sults, there seems to be no actual benefit in using Method 1 or 1’ over Method 2.
Method 4’, on the other hand, may not produce the same accurate results but
involves significantly less computational effort.

Finally, in Table 5, we show verified upper bounds for the condition number
of the inclusions X obtained by the respective methods. The values are com-

puted by INTLAB’s routine verifysingvalall and satisfy σ1(X)
σn−m(X) ≤ cnd for

all X ∈ X. Bounds close to 1 are desirable.

The condition numbers for Methods 2 and 3 show a correlation with the
problem dimension but no significant influence of the condition number of A.
To a certain extend this is also true for the other columns. In particular the
good values for cnd1’ demonstrate a good quality of the approximation Q̃2 for a
basis of the null space. The outliers in the columns for cnd1, cnd4 and cnd4’ can
be explained by the accuracy of the corresponding inclusions rather than the
condition number of the actual solution X. As an example, consider Method 4’
applied to the samples (m = 100, n = 200, cnd = 1014). The corresponding
median of the maximum relative error of the basis vector inclusions in Table 3
is acc4’ = 4.9 · 10−3. Assuming similar relative errors for all columns of X, the
spectral norm grows roughly with

√
n−m, so that ‖X−m(()X)‖2 ≤

√
m− n ·

maxk
‖rad (X∗k)‖2
‖m(()X∗k)‖2 = 0.049. To compute the actual value of supX∈X

σ1(X)
σn−m(X)

is an NP -hard problem that we do not attempt to tackle here. The values
presented in Table 5 are based on perturbation bounds for the singular values.

Reliable Computing 27, 2020 39

m n cnd cnd1 cnd1’ cnd2 cnd3 cnd4 cnd4’ cnd5 cnd6
50 100 105 1.00 1.00 1.00 11.3 1.00 1.00 14.6 1.00
50 100 1010 1.00 1.00 1.00 11.1 1.00 1.00 – –
50 100 1014 1.51 1.00 1.00 11.5 1.96 1.03 – –
50 200 105 1.00 1.00 1.00 16.0 1.00 1.00 26.6 1.00
50 200 1010 1.00 1.00 1.00 15.6 1.00 1.00 – –
50 200 1014 3.92 1.00 1.00 15.9 – 1.07 – –
50 500 105 1.00 1.00 1.00 23.0 1.00 1.00 46.2 1.00
50 500 1010 1.00 1.00 1.00 23.6 1.00 1.00 – –
50 500 1014 – 1.00 1.00 24.3 – 1.09 – –
50 1000 105 1.00 1.00 1.00 30.7 1.00 1.00 – –
50 1000 1010 1.00 1.00 1.00 30.4 1.00 1.00 – –
50 1000 1014 – 1.00 1.00 30.8 – 1.10 – –

100 200 105 1.00 1.00 1.00 19.7 1.00 1.00 26.4 1.00
100 200 1010 1.00 1.00 1.00 19.3 1.00 1.00 – –
100 200 1014 10.25 1.00 1.00 19.5 – 1.07 – –
100 500 105 1.00 1.00 1.00 30.6 1.00 1.00 55.2 1.00
100 500 1010 1.00 1.00 1.00 30.8 1.00 1.00 – –
100 500 1014 – 1.00 1.00 32.2 – 1.12 – –
100 1000 105 1.00 1.00 1.00 41.7 1.00 1.00 – –
100 1000 1010 1.00 1.00 1.00 43.3 1.00 1.00 – –
100 1000 1014 – 1.00 1.00 42.4 – 1.15 – –
200 500 105 1.00 1.00 1.00 39.7 1.00 1.00 59.9 1.00
200 500 1010 1.00 1.00 1.00 40.3 1.00 1.00 – –
200 500 1014 – 1.00 1.00 41.4 – 1.41 – –
200 1000 105 1.00 1.00 1.00 59.2 1.00 1.00 99.3 1.00
200 1000 1010 1.00 1.00 1.00 56.4 1.01 1.00 – –
200 1000 1014 – 1.01 1.00 61.6 – 1.73 – –

Table 5: Condition numbers of obtained inclusions

Since all the singular values are clustered around 1, the computed bounds for
σ1(X)

σn−m(X) are hardly better than σ1(m(()X))+‖X−m(()X)‖2
σn−m(m(()X))−‖X−m(()X)‖2 ≈

1+0.049
1−0.049 ≈ 1.1. This

corresponds to the value 1.07 in Table 5. The other outliers and also the values
very close to 1 can be explained in a similar way.

It is noteworthy that none of the tested methods produce ill-conditioned
enclosures X. Nevertheless, in terms of orthogonality of the basis, the results
obtained by Method 3 or 5 are not desirable. The other methods produce
enclosures for a nearly orthogonal basis of the null space if the verification was
successful.

40 R. Kobayashi et al., Inclusion of null space

5 Conclusion

We presented four verification methods to compute an inclusion of a basis of the
null space of a matrix. As illustrated in some numerical results, the presented
methods are applicable to matrices of large size and with large condition number.
We clarified that Methods 2 and 4’ are best for obtaining tight enclosures for a
nearly orthogonal basis of the null space; the former providing a higher accuracy
and the latter involving a smaller computational footprint. The fastest and still
accurate verification method for computing some basis of the null space of a
matrix is Method 3. The inclusions obtained by this method are not orthogonal
but typically well-conditioned.

Furthermore, we showed techniques to improve the accuracy of our presented
methods. The accurate preconditioning approach yields a particularly high ac-
curacy of the basis enclosures. Nevertheless, the involved computational efforts
make it suitable only for extremely ill-conditioned problems where the standard
methods fail.

The presented methods could be useful to study verification methods based
on null space methods for saddle point linear systems arising from the KKT
condition in optimization (cf. [1, 2]).

Acknowledgements

The authors wish to thank Florian Bünger for many fruitful remarks. We are
also indebted to the anonymous referees for their constructive reports that gave
this paper a much better structure.

References

[1] M. Benzi, G.H. Golub, and J. Liesen. Numerical solution of saddle point
problems. Acta numerica, 14:1–137, 2005.

[2] R. Fletcher and T. Johnson. On the stability of null-space methods for kkt
systems. SIAM Journal on Matrix Analysis and Applications, 18(4):938–
958, 1997.

[3] T.N.E. Greville. The pseudoinverse of a rectangular or singular matrix and
its application to the solution of systems of linear equations. SIAM review,
1(1):38–43, 1959.

[4] W.M. Kahan. A more complete interval arithmetic. Lecture notes for a
summer course at the University of Michigan, 1968.

[5] B. Kearfott, M. Nakao, A. Neumaier, S.M. Rump, S.P. Shary, and
P. Van Hentenryck. Standardized notation in interval analysis. Compu-
tational Technologies, 15(1):7–13, 2010.

Reliable Computing 27, 2020 41

[6] R. Krawczyk. Newton-algorithmen zur bestimmung von nullstellen mit
fehlerschranken. Computing, 4(3):187–201, 1969.

[7] A. Minamihata, K. Sekine, T. Ogita, S.M. Rump, and S. Oishi. Improved
error bounds for linear systems with h-matrices. Nonlinear Theory and Its
Applications, IEICE, 6(3):377–382, 2015.

[8] A. Neumaier. Interval methods for systems of equations, volume 37. Cam-
bridge university press, 1990.

[9] T. Ogita, S.M. Rump, and S. Oishi. Accurate sum and dot product. SIAM
Journal on Scientific Computing, 26(6):1955–1988, 2005.

[10] S. Oishi, K. Ichihara, M. Kashiwagi, K. Kimura, X. Liu, H. Masai,
Y. Morikura, T. Ogita, K. Ozaki, S.M. Rump, K. Sekine, A. Takayasu,
and N. Yamanaka. Principle of Verified Numerical Computations. Corona
publisher, Tokyo, Japan, 2018.

[11] J. Rohn. Verification of linear (in) dependence in finite precision arithmetic.
Mathematics in Computer Science, 8(3-4):323–328, 2014.

[12] S.M. Rump. Intlab-interval laboratory. In Tibor Csendes, editor, Develop-
ments in reliable computing, pages 77–104. Kluwer Academic Publishers,
1999. http://www.ti3.tuhh.de/intlab.

[13] S.M. Rump. Inversion of extremely ill-conditioned matrices in floating-
point. Japan Journal of Industrial and Applied Mathematics, 26(2-3):249–
277, 2009.

[14] S.M. Rump. Verification methods: Rigorous results using floating-point
arithmetic. Acta Numerica, 19:287–449, 2010.

[15] S.M. Rump. Accurate solution of dense linear systems, part ii: Algorithms
using directed rounding. Journal of computational and applied mathemat-
ics, 242:185–212, 2013.

[16] S.M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summa-
tion part i: Faithful rounding. SIAM Journal on Scientific Computing,
31(1):189–224, 2008.

[17] P. Wolfe. The reduced gradient method. Technical report, The RAND
Corporation, Santa Monica, CA. Unpublished., 1962.

[18] T. Yamamoto. Error bounds for approximate solutions of systems of equa-
tions. Japan Journal of Applied Mathematics, 1(1):157, 1984.

	Notation and previous work
	Main result
	Enclosure for underdetermined linear systems
	Square linear system embedding
	Square linear system reduction
	Rohn's Method

	On the accuracy of enclosures of a basis of the null space
	Improving the accuracy

	Numerical results
	Conclusion

