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Abstract

Simultaneous Localization and Mapping (SLAM) problems have been
classically solved by probabilistic methods (EKF-SLAM/Fast-SLAM) or
Optimization method (Graph-SLAM). A common issue confronted by
these methods is the consistency problem. This paper proposes a new
method which theoretically relys on interval analysis to solve the SLAM
problem. The aim is to achieve consistent solutions. Different from other
methods which require probability distribution assumptions on uncertain-
ties, only a soft prerequriste is needed (the errors are bounded). With
proposed bounded-error parametric models, we cast the SLAM problem
into an Interval Constraint Satisfaction Problem (ICSP), constraint prop-
agation techniques are then applied to search for all feasible solutions,
providing a guaranteed rather than a probabilistically defined result. Our
method has been validated on both simulations and experimentations.
Results demonstrate the capability of the our method in obtaining con-
sistent solutions.
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1 Introduction

Simultaneous Localization and Mapping (SLAM) has been an active topic in robotics
literature over the past decades, and there has been a plethora of publications that
proposed different solutions [17, 27, 34, 38]. Most of these approaches are classified as
probabilistic method as they rely on studying the propagation of probabilistic distribu-
tions of the sensor noise and the unknown parameters (e.g., robot pose and landmark
position). Some others, on the other hand, do not require any assumptions about
the probability distribution of uncertainties, except that they are bounded by real
intervals. These approaches are regarded as interval analysis based methods.

It has been well noticed by the research community that probabilistic methods
suffer the inconsistency problem [12, 39, 40]. For instance, EKF-SLAM suffers from
the linearization of the non-linear models which introduces spurious updates of the
landmark estimate [1]. As the landmarks state uncertainty could be optimistic, the
consistency is not guaranteed anymore. FastSLAM encounters different problems than
those of the EKF-SLAM. Bailey shows that FastSLAM cannot be consistent due to
the quantification errors (FastSLAM must have a finite number of particles) and the
resampling process (resampling is necessary to focus the algorithm in the highest
probability regions) [2] . Moreover, each deleted particle entails a depletion in the
historical information that may generate consistency problems. FastSLAM degener-
ates over time, regardless of the number of particles used or the density of landmarks
within the environment, and will always provide optimistic estimates of uncertainty
in long-term.

Graph-SLAM is an important step toward more consistent results: they avoid
linearization inconsistency by re-linearizing, at each iteration, all observations around
the current state of the system. A graph-based SLAM algorithm represents the SLAM
problem by a graph and uses a graph optimization method to solve it. The concept
of graph-based SLAM has been first introduced by Lu and Milios [26]. It has been
then used and developed later in [10], [35]. Although graph-based SLAM algorithms
presents more consistent results than EKF-SLAM or FastSLAM, they have the same
probabilistic foundation: all these algorithms assume zero mean Gaussian noises.

Constraints propagation algorithm involving interval analysis [30] is alternative
and less known method which allows us to solve nonlinear problems in a guaranteed
way. Instead of making hypothesis on the probability distribution of sensor noises,
interval methods take a soft assumption that all the noise are bounded within known
limits. This seems to be a very realistic representation as most sensor manufacturers
provide the maximum and minimum possible measurement errors under suitable work-
ing conditions. These extreme values of error can then be regarded as the error bounds.
Interval Constraint Propagation (ICP) algorithms can be used to recursively propagate
such bounded errors by using consistency techniques and systematic searching meth-
ods. Contrary to probability methods, interval based methods provides guaranteed
sets which enclose the real state, without losing any feasible value.

Interval analysis was introduced in the mobile robotic area decades ago. It was
mainly used in outdoor vehicle localization field [8, 22, 23, 37] and under-water robot
localization [14] with nonlinear motion and sensor models. The main advantage of
interval based localization over Kalman filtering or Bayesian methods is that it guar-
antees that the position of the robot is in a region. Kalman filtering or Bayesian
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methods can only associate a probability to such a region, safety cannot be guaran-
teed.

The first interval based SLAM algorithm was introduced by Di Marco et al. in 2001
[5], it defined the SLAM problem into four main phrases. This work was extended in
2004 by adding a matching step [6]. A number of follow-up papers [7, 17, 18, 19, 32],
offer improved performance on SLAM problem. Drocourt et al. [7] proposed their IA
based SLAM using SIVIA (Set Inversion Via Interval Analysis). It combined odome-
ters and a stereoscopic omnidirectional vision sensor of 360◦ view. The robot pose
and landmark’s position are represented by subpavings. Simulation results show that
the evolution of the subpavings is robust and coherent. Porta [32] applied CUIK
(Complete Universal Inverse Kinematics) algorithm to solve the SLAM algorithm. In-
door experimental results with a sonar have shown the soundness of the approach.
Jaulin [17] presented his first SLAM algorithm based on CP (Constraint Propaga-
tion) algorithm. The principle of his approach is to cast the SLAM problem into a
constraint satisfaction problem (CSP) for which interval propagation algorithms are
particularly powerful. Experiments [18, 25] were conducted on a under-water robot
platform equipped with a GPS, a sonar, a Doppler Velocity Log, a gyrocompass and
a depth sensor. Results showed that the algorithm gives a consistent localization.

The aim of the paper is to present an extension of constraint propagation based
SLAM algorithm (CP-SLAM): instead of hiring ultrasonic [21], sonar [18, 33] or GPS
[13, 23] as exteroceptive sensors, we propose to use a monocular camera. A bounded
landmark parametrization and undelayed initialization method for nature landmarks
is put forward. The undelayed initialization allows us to directly use all available
observations to estimate the robot position. Furthermore, our approach does not
require data pre-processing by human operators as in [15, 16]. Finally, the properties
of our CP-SLAM algorithm are validated with both simulations and experimental
results, a comparison with EKF-SLAM in terms of consistency is also presented.

The paper is structured as follows: Section II presents the basics of the Interval
Analysis and Constraint Propagation. Section III details our CP-SLAM algorithm.
Simulations are presented in Section IV followed by experimental results in section V.

2 Basics of Interval Analysis and Constraint Prop-
agation

Interval analysis [31] was introduced in the sixties to solve the problem of approxi-
mations made during numerical calculations. The key idea of interval analysis is to
represent numbers by intervals which include the real values. An interval is defined
represented by [ ]. For example: [x] = [x, x] = {x ∈ R|x ≤ x ≤ x} is the interval which
is guaranteed to contain the real value x. A set of rules have been defined to extend
all the elementary mathematical operations to intervals.

2.1 Interval Analysis

2.1.1 Overview

IA proposes to represent a solution of a problem by an interval in which the real
solution is guaranteed to be contained. IA provides a set of rules to calculate with
intervals [x] = [x, x] ⊂ R where x and x are respectively the lower and upper bound of
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[x]. The width of an interval is w([x]) = x− x. Arithmetical operations (+, −, × and
/) and standard mathematical functions readily extend to intervals. For example,

[1, 2] + [3, 4] = [4, 6]

ln ([1, e]) = [0, 1] . (1)

2.1.2 Free libraries

The computation with IA is simplified by the use of CXSC, a C++ class library
supporting the most commonly needed interval and real operations in a user friendly
way. This library allows manipulating intervals as numbers. All basic mathematical
functions are implemented in order to accept numbers as well as intervals.

2.1.3 Inclusion function

The definition of inclusion function is one of the most important notion provided by
IA [31]. For any function f : D ⊂ R→ R defined as a combination of arithmetical op-
erators and elementary functions, interval analysis makes it possible to build inclusion
functions [f ] satisfying:

∀ [x] ⊂ D, f ([x]) ⊂ [f ] ([x]) , (2)

where f ([x]) denotes the set of all feasible values taken by f over [x].
The simplest way to obtain an inclusion function is to replace all real variables by

interval ones and all real-valued operators or elementary functions by their interval
counterparts. The natural inclusion function is then obtained. For example, the
natural inclusion function for

f (x) = x2 − x+ 1 (3)

is:

[f ] ([x]) = [x]2 − [x] + 1. (4)

It is then possible to enclose the set of all values taken by a function over a given
interval into a computable image interval.

2.2 Constraints propagation

Constraint propagation techniques were proposed in the seventies by [36] and mainly
used in artificial intelligence [28]. Constraints propagation was merged with IA in the
late 80’s [4].

A constraint Ci between the intervals [z1], ..., [zn] is defined as:

Ci([z1], ..., [zn]) = 0, i = 1, ...,m (5)

A Constraints Satisfaction Problem (CSP) [20] is defined by a set of constraints.
The solution of such a problem is the smallest box or a list of pavings verifying the
set of constraints.

A CSP is solved by making successive contractions of the initial box, which guaran-
tees the least possible pessimistic result. The solution box contains every point satisfy-
ing the set of constraints. Such contractions may be carried out by Forward/Backward
Propagation techniques [9, 20].
Let us assume the following set of constraints:



46 Vincke et al, Constraint Propagation based SLAM

Figure 1: MiniB, our experimental platform

{
z = x+ ln(y)

y = z2
(6)

Forward propagation reduces the left terms of Eq. (6)

[z] ∈ [z]
⋂

([x] + ln([y])) (7)

[y] ∈ [y]
⋂

[z]2 (8)

Backward propagation reduces the right terms of Eq. (6)

[x] ∈ [x]
⋂

([z]− ln([y])) (9)

[y] ∈ [y]
⋂

exp([z]− [x]) (10)

[z] ∈ [z]
⋂√

[y] (11)

Forward and Backward equations obtained from the constraints are computed one
after the other (in this example we compute Eq. (7), (8), (9), (10) and finally (11)).
When all the constraints have been computed, we restart at the beginning (Eq. (7)) .
We loop until the intervals are no more contracted or contracted less than a threshold.

3 CP-SLAM

This section presents our Constraints Propagation based SL AM algorithm designed
for a wheeled robot embedding two odometers (located on each front wheel) and a
front camera. We only use the RGB camera which is located in the middle of the
vision sensor (see Fig 1).

3.1 Problem statement

The pose of the robot is represented by a characteristic point that is located midway
between the front wheels (this point is also the camera’s characteristic point). The
imprecise pose of the robot is represented by one single box [x] = ([x], [z], [θ])T with
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x, z the robot position in the global frame and θ the rotation around the y-axis (the
vertical axis). We suppose that the robot is moving on a plane (−→x ,−→z ) and hat the
global frame is defined by the initial robot pose on the ground.

The robot is localized by odometers and distinguishable landmarks which are fea-
tures detected by the embedded camera. The feature extraction is performed using
the Speeded Up Robust Features (SURF) algorithm [3].

3.1.1 Landmark Representation

Probabilistic SLAM algorithms often represent landmarks with an inverse depth parametriza-
tion [29]. This parametrization can cope with features over a wide range of depths
and provides measurement equations with a high degree of linearity. Nevertheless, a
Gaussian distribution is not an efficient way to represent the linear depth uncertainty
of a camera. Ideally, the landmark uncertainty should be represented by an infinite
cone including the observed landmark. Contrarily to probabilistic SLAM algorithms,
interval analysis can cope with this model in an easy and efficient way by using interval
vectors:

[yi] = ([xi], [zi], [ϕi], [θi], [di]) (12)

with:

• [xi], [zi]: the intervals including the camera pose during the first observation of
the landmark. We suppose that the robot is moving on a plane (yi = 0).

• [ϕi], [θi]: the intervals including the elevation and the azimuth of the ith vector
m[]([θi], [ϕi]) pointing to the landmark.

• [di]: the interval representing the distance of the landmark along the direction
vector.

We have designed such a representation as the core of our undelayed initialization.
We claim that our undelayed initialization is more efficient than a delayed initialization
using a pessimistic 3D landmark box. Indeed, a 3D box defined by the 3 axis of the
space is bigger then [yi] because it encompasses 3 parameters ([ϕi], [θi], [di]) in a
pessimistic way.

3.1.2 Landmark Initialization

The landmark parameters are initialized as follows:

• [xi] = [x] and [zi] = [z]: both intervals are defined by the robot pose which is
also the camera pose.

• [di] = [0,+∞]: the unknown distance to the landmark.

• [θi] = [θ]+[θRobotFi ] and [ϕi] = [ϕRobotFi ]: θ is the heading which is also the camera
angle. In the robot frame (which is also the camera frame), both the orientation angle
[θRobotFi ] of the landmark and the elevation angle [ϕRobotFi ] of the landmark are inferred
using the classical pinhole model:

[ϕRobotFi ] = − arctan(
[cu]− [uobs]

[ku][L]
) (13)

[θRobotFi ] = − arctan(
[cv]− [vobs]

[kv][L] cos([ϕRobotFi ])
) (14)
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where (uobs, vobs) are the landmark’s pixel on the camera plane, L is the focal
length, (ku, kv) are the pixel size and (cu, cv) is the principal point. All these param-
eters are obtained thanks to a classical calibration process. [cu], [ku], [cv], [kv], [L] are
defined from the calibrated value with added imprecision.

3.2 State Estimation

The estimation of the robot pose uses two sets of constraints inferred from the dis-
placement model and from the observation model. This leads to the prediction and
correction steps.

3.2.1 Prediction Step

The prediction process consists in moving the localization box [24]:

[xk] = [f ]([xk−1], [uk]) [xk]
[zk]
[θk]

 =

 [xk−1] + [δsk] cos([θk−1] + [δθk]
2

)

[zk−1] + [δsk] sin([θk−1] + [δθk]
2

)
[θk−1] + [δθk]

 (15)

where [ ] are intervals including the real values. [uk] = ([δsk] , [δθk])T is the input
vector. δsk represents the elementary displacement of the vehicle and δθk represents
the elementary rotation. Both δsk and δθk are measured between instants k − 1 and
k. δsk and δθk are computed using:

[δsk] = [π]( [wl][δpl] + [wr ][δpr ] )
P

[δθk] = [π]([wl]([δpl])−[wr ]([δpr ]))
2·[e]·P

(16)

with:

• wi: the radius of the wheel i, with i ∈ {r, l} (r=right, l=left).

• δpi: the number of steps measured by the odometers between instants k−1 and
k.

• P : the odometer resolution,.

• e: the half length of the front axle.

The maximum error of an odometer is one step (one step more or one step less).
Consequently, the real value of the displacement of a non sliding wheel may be bounded
by [δp] = [δp − 1, δp + 1] with δp the number of measured steps. When considering
sliding, the movement of a sliding wheel can be inferred from a non-sliding one by
adding a sliding noise [εp] : [δp] = [δp− 1− εp, δp+ 1 + εp].

The displacement model (Eq. 15) defines a set of 5 constraints among the intervals
[xk], [xk−1], [zk], [zk−1], [θk−1], [θk], [δsk], [δθk]. This set of constraints lead to the
Forward/Backward equations given in Table 1.

3.2.2 Correction Step

The bounded landmark pose of the ith landmark in the global frame is:

Li =

 xi
0
zi

+ di ·m(θi, ϕi) (17)
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Forward Propagation

1. [xk] = [xk]
⋂
([xk−1] + [δsk] cos([θk−1] +

[δθk]
2 ))

2. [zk] = [zk]
⋂
([zk−1] + [δsk] sin([θk−1] +

[δθk]
2 ))

3. [θk] = [θk]
⋂
([θk−1] + [δθk])

Backward Propagation

1. [xk−1] = [xk−1]
⋂
([xk]− [δsk] cos([θk−1] +

[δθk]
2 ))

2. [zk−1] = [zk−1]
⋂
([zk]− [δsk] sin([θk−1] +

[δθk]
2 ))

3. [δsk] = [δsk]
⋂
(([xk]− [xk−1])/ cos([θk−1] +

[δθk]
2 ))

4. [δsk] = [δsk]
⋂
(([zk]− [zk−1])/ sin([θk−1] +

[δθk]
2 ))

5. [θk−1] = [θk−1]
⋂
([θk]− [δθk])

6. [θk−1] = [θk−1]
⋂
(arccos(([xk]− [xk−1])/[δsk])− [δθk]

2 )

7. [θk−1] = [θk−1]
⋂
(arcsin(([zk]− [zk−1])/[δsk])− [δθk]

2 )

8. [δθk] = [δθk]
⋂
(arccos(([xk]− [xk−1])/[δsk])− [θk−1])

9. [δθk] = [δθk]
⋂
(arcsin(([zk]− [zk−1])/[δsk])− [θk−1])

10. [δθk] = [δθk]
⋂
([θk]− [θk−1])

Table 1: Forward/Backward Propagation
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Figure 2: Landmarks map’s evolution

where yi = 0 because the robot only moves on the ground. m(θi, ϕi) is a vector
pointing from the camera to the landmark Li.

m(θi, ϕi) =

 − sin(θi) cos(ϕi)
sin(ϕi)

cos(θi) cos(ϕi)

 (18)

The bounded landmark pose in the camera frame is:

Lci = Rrob(Li −Trob) (19)

where Rrob is the rotation matrix between the coordinates of the global and the
robot frame and Trob = ( x, 0, z )T = x is the robot position.

The camera observes the projection of the ith landmark on the image plane. Such
an observation may be predicted by the measurement function which involves the
robot pose through the landmark pose [Lci ]. It leads to the following constraints:

hi =

(
ui,pred
vi,pred

)
=

 cu − kuL
Lc

i,x

Lc
i,z

cv − kvL
Lc

i,y

Lc
i,z

 (20)

where cu, L, ku, cv, kv are the camera parameters (defined beneath Eq. 14).
Furthermore, by matching the predicted measurement with the observed one, we define
two more constraints: {

[ui,pred] = [ui,obs]
[vi,pred] = [vi,obs]

(21)
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The predicted and observed features are matched by:

• projecting the imprecise landmark on the image plane using Eq. 20 (probabilistic
algorithms proceed in the same way by projecting an ellipsoid). This projection
define a searching area ([ui,pred],[vi,pred] ) and links the robot pose with the
landmark localization.

• selecting, in the projected area, an interest point ([ui,obs], [vi,obs]) which has the
closest SURF-descriptor to the landmark descriptor.

A Constraint Satisfaction Problem composed of a set of 4 constraints, for each observed
landmark, is obtained from Eq. (20) and (21). In order to reduce the computational
load of the processor, the problem may be simplified into two constraints which are
the correction equations:  ui,obs = cu − kuL

Lc
i,x

Lc
i,z

vi,obs = cv − kvL
Lc

i,y

Lc
i,z

(22)

Both the robot pose and the landmarks pose are updated from Equation (22) where
([Lci,x], [Lci,y], [Lci,z]) = [Lci ] is the landmark pose in the camera frame. Equation (19)
links [Lci ] to the robot pose and to the landmark pose in the global frame. Equation
(22) leads, in the same way as during the prediction step, to a set of Forward/Backward
equations (among the intervals [x], [z], [θ], [xi], [zi], [θi], [ϕi], [di], [ui,obs],[vi,obs]) which
corrects both the robot pose and the landmark pose.
The pose of the robot and the landmarks are represented by boxes. There is no
correlation in error as in probabilistic algorithms. Nevertheless there is a link between
the poses which helps to jointly reduce the errors. This link is built by the whole
set of equations at present time: all the landmarks are linked together via the robot
pose. Furthermore there is another link between the variables of each pose: a Time
Link (TL). This TL links each pose trough time and a modification on one parameter
propagates in the past when it modifies another parameter (thanks to the prediction
equations) and retropropagate in the present state.

3.3 First Simulation Results

Fig. 2 shows the evolution of the landmark uncertainties while the robot follows a
straight path and uses our CP-SLAM algorithm. The leftmost image of Fig. 2 shows
the initialization of the landmarks (see Sec. 3.1.2). Each landmark is initialized as an
infinite cone: there is no information on the depth hypothesis. The following images
show the evolution of the landmarks uncertainty after some prediction and correction
steps. The more the parallax is important, the more the uncertainty correction is
important. For instance, landmarks 1 and 5 are strongly corrected after a few obser-
vations. After a robot’s displacement of 2 meters, the landmark depth uncertainty
was reduced to less than 1m.

4 Simulations

We have used simulations to thoroughly test our CP-SLAM algorithm with an exact
reference and compare the results to the classical EKF-SLAM.



52 Vincke et al, Constraint Propagation based SLAM

4.1 Experimental setup

4.1.1 Environment

The simulated environment is a 15×15m2 area including 300 landmarks randomly
positioned and two obstacles (see Fig. 8). Simulation are made using known data as-
sociations between observations and previous landmarks observations. We put a white
Gaussian noise (3σr=0.25mm) on the wheel radius (r = 4cm) and a white Gaussian
noise (3σe=0.5mm) on the length of the rear axle (e = 20cm). Observations noises
are set to 3σo=3 pixels. At each simulation step, corresponding to a displacement
of 6 cm, the true robot’s localization (aref ) is known and compared to its estimate
(a). In Section 4.2 the robot follows circles while in Section 4.3 he follows a random
path. Whereas CP-SLAM use the 3σ bound noise, EKF-SLAM use a σ2 variance.
If we set CP-SLAM with a one standard deviation noise (σ), we would assume that
about 68.26 percent of the data values are within our defined interval. It will be in-
sufficient in most cases and leads to a great number of outliers. That’s why, as others
researchers, we have chosen the 3 standard deviations bound (99.73 percent of the data
value are within our interval). Nevertheless, the interval error of the both algorithm
are comparable as explained thereafter.

4.1.2 Consistency

For each simulation, we verify the algorithm consistency thanks to the interval error
[37] and we study the volume of the localization box (V = (x− x)(z− z)(θ− θ)). The
interval error of an estimated state a is defined by [a− aref , a− aref ] where aref is the
reference state (the true state). Consequently, a filter exhibits precise and consistent
results if its corridor is thin and if it always includes the zero value (it means that the
filter imprecision includes the reference). The imprecise estimated state a is directly
output by the CP-SLAM algorithm (whose input is a 3σ bounded noise) while the
output standard deviation of the EKF-SLAM (whose input is a σ noise) is magnified
3 times. Consequently, the CP-SLAM imprecise state is defined by aCP =

[
aCP , aCP

]
whereas the EKF-SLAM state is aEKF = [âEKF − 3σaEKF , âEKF + 3σaEKF ] (where
âEKF is the estimated state).

4.1.3 Real time and post localization

CP-SLAM uses a set of constraints which is dynamically build along the experimenta-
tion. At each step, it adds new constraints into the Constraints Satisfactions Problem
(constraints based on the prediction model and constraint based on each observation).
Next, using a Forward/Backward algorithm, the intervals are contracted.
We define two different localization: the real time localization which corresponds to
the current localization at each step, and the post localization which correspond to the
best localization using all the data of the experimentation: the Forward/Backward al-
gorithm uses future observations in order to correct past estimations. The localization
improvement due to the new observation will be propagated to the past localization.

4.2 Stability of the robot pose

The robot follows 3 times the same circle (the diameter of the circle is 6 meters) in the
test-environment described in Section 4.1.1. Fig. 3 presents the CP-SLAM results for
the real-time and post localization. We can notice that the process is stabilized: the
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Figure 3: CP-SLAM interval error when looping on the exact same path

imprecision on the robot’s localization remains stable despite the increasing number of
laps. Theoretically, localization (of a major part of the followed path) could improve
lap after lap due to the detection of previously detected landmarks with a different
pose/uncertainty. Experimentally, the constraint satisfaction become very difficult
after the second lap: the third lap is a copy of the second lap and so on. Further
laps (which are a copy of the previous ones) are not shown. We have done another
simulations with different landmarks locations and we get the same results. The post
localization provides a similar performance during the 3 laps because it uses the same
full updated map at each time step. Fig. 4 represents the EKF-SLAM results. Figures
3 (CP-SLAM) and 4 (EKF-SLAM) have not the same y-axis due to large differences
between the interval errors of both algorithms. The EKF-SLAM localization is more
accurate than in the case of the CP-SLAM. It has small consistency problems on the
z axis (step 100, 400-500, 700). Both real time and post localization CP-SLAM are
consistent during the entire simulation (their corridors always includes the zero value)
but they have much larger uncertainties than the EKF-SLAM.

4.3 Convergence of the landmarks pose

To further improve the map, the robot should not follow the same path and should
observe the landmarks from different view points. Fig. 5 and Fig. 6 (caution: the
y-axis is not the same for both figures) represent the interval errors when the robot
followed a random path in our test environment. We set the covariance of EKF-SLAM
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Figure 4: EKF-SLAM interval error when looping on the exact same path

by using the uncertainty models of sensors and the vehicle. EKF-SLAM is highly
inconsistent (see Fig. 6) with these settings. We could get a consistent EKF-SLAM
by tuning carefully (enlarging) the noises value for each simulation (we can do it at
posteriori by using the reference). However such an EKF-SLAM tuning does not seem
feasible for the SLAM problem in real world because we do not have such a reference.
Such an inconsistency has already been described and studied in [11, 12, 39, 40].
CP-SLAM is consistent during the whole experiment. The post localization greatly
improves the localization results, while at the same time keeping them consistent.
Nevertheless, the imprecision of the CP-SLAM is ten time larger than the imprecision
of the EKF-SLAM.

Figure 7 represents the final map created by the CP-SLAM and Fig. 8 shows the
final EKF-SLAM map. The CP-SLAM map is consistent (the real landmarks positions
“+” are included in the pink landmark uncertainty) whereas EKF-SLAM map is not
consistent (real localization landmarks “+” are not included in the blue small ellipse).
CP-SLAM provides a consistent map with a less accurate localization results due to a
slower convergence than the EKF-SLAM.

5 Experimentation

We performed an experiment in a large classroom located in our laboratory building.
Figure 9 shows the environment of the experiment. There are two pillars and two large
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Figure 5: CP-SLAM interval error for a random path

Figure 6: EKF-SLAM interval error for a random path
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Figure 7: The random path and the associated CP-SLAM map results

Figure 8: The random path and the associated EKF-SLAM map results
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Figure 9: Environment of the experimentation
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Figure 10: CP-SLAM experimental results

Figure 11: CP-SLAM interval error experimentally obtained
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tables attached to each pillar. Computers are placed on each table and chairs are near
the tables. We use the same noises as those defined for the simulation. Consistency
tests were performed thanks to reference points drawn by the robot on the ground.

Figure 10 shows the first trajectory lap reconstructed by our robot using CP-
SLAM (each horizontal or vertical part of the path is about 6 meters). The two larges
obstacles of Fig. 10 are designed in order to see the occlusions created by the two
pillars/tables. We notice that all boxes include the reference points (noted “R” on
Figure 10) and thus visually verified the consistency of CP-SLAM.

Results of the interval error of the CP-SLAM (during 5 laps) are represented on
Figure 11. CP-SLAM is consistent during the whole experiment: the corridor always
includes the zero value.

A loop closure is performed by CP-SLAM at the end of each lap (each nine reference
points, see Fig. 11). Once the loop closure is performed, the size of the localization
box is about 10 cm long and the orientation uncertainty is 0.1 rad.

The localization of the robot during the second lap is a bit more imprecise than
that computed during the first lap: this is due to the difficulties to match known land-
marks. We do not show such a phenomenon during the simulation section because the
matching was perfect. Nevertheless, the localization uncertainty is stabilized during
the experiment: the uncertainty of the third lap is less important than the uncertainty
of the second one. The increase in robot uncertainty, during a lap, is mainly due to
the heading imprecision. After the loop closure, the heading uncertainty was 0.1 rad.
We do not show the interval error on the heading because we have not experimentally
measured the reference heading.

6 Conclusion

To dealing with the consistency issue in SLAM literature, this paper presents a Con-
straints Propagation based SLAM algorithm. The proposed method works in two es-
sential step using constraint propagation technique: the prediction step uses a bounded
displacement model to integrate odometric data and the correction step process the
vision observations by constructing ICSP. The bounded parametrization for nature
landmark turns out to be effective and complete in monocular vision since no depth
hypothesis or approximation are needed during the initialization. Our CP-SLAM al-
gorithm is evaluated in both simulation and real data experiments. A comparison is
made between CP-SLAM and the representative probabilistic method (EKF-SLAM).
EKF-SLAM give more optimistic uncertainty estimation but consistency is not main-
tained whereas CP-SLAM gives stable and consistent result. Although CP-SLAM
expresses a ten time larger uncertainties than those of the EKF-SLAM in the experi-
ments, it worth the efforts to further study the CP-SLAM method since it is capable of
providing guaranteed result. This is an important result for some robotic autonomous
applications especially when safety is a crucial issue. Further work will dedicate to
exploiting powerful ICP algorithm to reduce the uncertainties .
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