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Abstract

In many practical situations, uncertainty with which we know each
quantity is described by an interval. Techniques for processing such in-
terval uncertainty use the fact that the sum, difference, and product of
two intervals is always an interval. In some cases, the set of all possible
value of a quantity is described by a bi-interval – i.e., by a union of two
disjoint intervals. It is known that already the sum of two bi-intervals
is not always a bi-interval. In this paper, we describe all the classes of
bi-intervals which are closed under addition (i.e., for which the sum of
bi-intervals is a bi-interval), closed under linear combination, and closed
under other operations.
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1 Formulation of the Problem

Interval uncertainty: a brief reminder. In many real-life situations, our uncer-
tainty about a quantity is described by an interval; see, e.g., [20].

For example, usually, the information about a physical quantity x comes from
measurements. As a result of the measurement, we get a value x̃ which is, in general,

different from the actual (unknown) value x: ∆x
def
= x̃ − x 6= 0. Often, the only

information that we have about the measurement accuracy is the upper bound ∆
on the absolute value |∆x| of the measurement error ∆x. In this case, after the
measurement, the only information that we gain about the actual value x is that x
belongs to the interval [x̃−∆, x̃ + ∆]; see, e.g., [20].
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Comments.

• In some cases, we only get the lower bound. In such cases, we get an interval
[v,∞). It is also possible to have intervals (−∞, v], and, of course, we can have
the whole real line (−∞,∞) corresponding to the case when we do not have any
information about x.

• Throughout this paper, intervals will be denoted by boldface letters.

Interval computations. In many practical situations, we want to understand the
state of the world and we want to predict the future state of the world. The state of
the world is characterized by the values of different quantities.

Some of these quantities we can directly measure, but many others are difficult
to measure directly. So, we need to be able to estimate the value y of a difficult-to-
directly-measure quantity. For prediction, we need to estimate the future values of
different quantities y – and, of course, it is not possible to measure this future value
now.

The usual way to perform these estimations is to use a known relation y =
f(x1, . . . , xn) between the desired quantity y and one or several directly measurable
quantities x1, . . . , xn. So, to compute an estimate ỹ for the desired quantity y, we
measure the corresponding quantities xi and then apply the algorithm f to the mea-
surement results x̃1, . . . , x̃n: ỹ = f(x̃1, . . . , x̃n).

As we have mentioned, the actual (unknown) value of each quantity xi is, in gen-
eral, different from the measurement result x̃i. As a result, even when the dependence
y = f(x1, . . . , xn) is known exactly, the actual value y is, in general, different from
the estimate ỹ. How different can it be? To answer this question, we need to find the
range

y
def
= f(x1, . . . ,xn) = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn} (1)

of all possible values of y = f(x1, . . . , xn) when all we know about each quantity xi is
that it belongs to the corresponding interval xi. The problem of computing this range
is known as the problem of interval computation; see, e.g., [10, 15, 18]

Most algorithms for solving this problem use the fact that inside the computer, the
only hardware supported numerical operations are elementary arithmetic operations:
addition, subtraction, multiplication, and division. To be more precise, division a/b is
implemented as the product a · (1/b), so what is hardware supported is not division
itself, but the operation of taking the inverse 1/b. Every computation inside the
computer consists of a sequence of such arithmetic operations. For example, when a
computer computes the value of exp(x) or sin(x), what it actually computes is the value
of the corresponding polynomial – the sum of the first few terms in the corresponding
Taylor expansion.

Since elementary arithmetic operations form the basis of all computations, it is
natural to first solve the interval computation problem for the cases when the corre-
sponding function f(x1, x2) is one these arithmetic operations: addition, subtraction,
multiplication, and taking the inverse. It is known that for these functions, the range
y is also an interval (expect, of course, for the case of the inverse 1/b when the interval
os possible values of b contain 0. For example, if x1 and x2 are intervals, then their
sum

x1 + x2
def
= {x1 + x2 : x1 ∈ x1 and x2 ∈ x2} (2)

is also an interval, and for every two real numbers c0 and c1, the set

c0 + c1 · x1
def
= {c0 + c1 · x1 : x1 ∈ x1} (3)
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is also an interval. The corresponding range can be computed by using simple formulas;
these formulas are known as formulas of interval arithmetic.

To estimate the range (1) for a generic algorithm f(x1, . . . , xn) – that consists of
a sequence of elementary arithmetic steps – as a very crude approximation, we can
simply replace each operation with numbers with the corresponding operation with
intervals. In some simple cases, this naive approach leads to reasonable results, but in
general, to get meaningful results, we need to apply some sophisticated methods. In
effect, these methods involve replacing the original algorithms with an equivalent one,
and then kind-of applying interval arithmetic to the resulting algorithm. So, interval
arithmetic still forms the basis for most current interval computations algorithms.

Linearization. In general, the problem of computing the range f(x1, . . . ,xn) is NP-
hard already for quadratic functions f(x1, . . . , xn) – the simplest non-linear functions;
see, e.g., [12]. Crudely speaking, this means that unless P=NP (which most computer
scientists believe to be impossible), no feasible algorithm is possible that would always
compute the exact range (1). In situations when we cannot compute the exact range
and cannot compute a good enclosure (outer approximation) Y ⊇ y for this range, a
natural idea is to compute some approximate range.

A typical way to compute such an approximate range is to use the fact that mea-

surements are usually reasonably accurate, i.e., the measurement errors ∆xi
def
= x̃i−xi

are reasonably small. In such situations, we can expand the desired value

f(x1, . . . , xn) = f(x̃1 −∆x1, . . . , x̃n −∆xn) (4)

in Taylor series in terms of ∆xi and keep only linear terms in this expansion; see, e.g.,
[5, 11, 25]. This way, we get the following approximate formula:

f(x1, . . . , xn) = f(x̃1 −∆x1, . . . , x̃n −∆xn) ≈ f(x̃1, . . . , x̃n)−
n∑

i=1

∂f

∂xi
·∆xi, (5)

i.e.,
f(x1, . . . , xn) = a0 + a1 ·∆x1 + . . . + an ·∆xn, (6)

where we denoted a0
def
= f(x̃1, . . . , x̃n) and

ai
def
= − ∂f

∂xi
(x̃1, . . . , x̃n). (7)

Substituting ∆xi = x̃i − xi into this formula, we conclude that

f(x1, . . . , xn) ≈ c0 + c1 · x1 + . . . + cn · xn, (8)

where c0 = a0 +
n∑

i=1

ai · x̃i and ci = −ai.

Thus, from the practical viewpoint, it is important to study the case when the
function f(x1, . . . , xn) is a linear combination of its inputs.

Need for bi-intervals. In some cases, the set of possible value of a physical quantity
is a union of two intervals; we will call such unions bi-intervals. For example, if we
measured the absolute value of the velocity of an object moving along a line, and the
result is [1, 2], but we do not know the direction of the motion, then all we know about
the actual velocity is that its value is in the union [−2,−1] ∪ [1, 2].

Comment. We consider situations in which we have two nested intervals:
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• the larger interval A – in our case, the interval [−2, 2] – that contains all possible
values of the corresponding quantity, and

• the smaller interval a (a subset of the larger interval A) – in our case, the interval
(−1, 1) – which does not contain any possible value of this quantity.

To avoid possible confusion, it should be mentioned that there are other situations
in which the set S of possible values of a quantity is characterized by two nested
intervals a ⊆ A. For example, in many practical situations, we know:

• a larger interval A that contains the unknown set S: S ⊆ A; this set is known
as an enclosure, or outer approximation, and

• a smaller interval a that is contained in the unknown set S: a ⊆ S; this set is
known as an inner approximation to the set s; see, e.g., [3, 6, 7, 9, 13, 14, 16,
19, 22, 23].

This situation is different from the one that we consider in this paper. Indeed, in both
cases, the relation between the set S and the larger interval A is the same: we have
S ⊆ A. However, the relation between the set S and the smaller interval is different:

• in our case, the sets S and a have no common elements: S ∪ a = ∅; while

• in the case when the interval a is an inner approximation, we have a ⊆ S.

Multi-intervals. In some cases, there are other constrains, so, in general, the set of
possible values is the union of two or intervals; see, e.g., [1, 2, 4, 8, 17, 21, 26]

Comment. In this paper, multi-intervals (in particular, bi-intervals) will be denoted
by capital letters A, B, . . . .

How to process data until multi-interval uncertainty. If we know inputs xi

with multi-interval uncertainty, how can we compute the corresponding range of pos-
sible values of y = f(x1, . . . , xn)? Similarly to the case of interval computation, it is
reasonable to first start with the case when the corresponding function f(x1, x2) is one
of the elementary arithmetic operations.

In this paper, we analyze the simplest non-interval case when all multi-intervals are
bi-intervals. We start with the simplest elementary arithmetoc operation – addition.

Already for the simplest arithmetic operation – addition – in general, the
set of bi-intervals is not closed under addition. It is easy to come with an
example when the sum of two bi-intervals is not a bi-interval: e.g., it is easy to check
that

([0, 1] ∪ [5, 6]) + ([0, 1] ∪ [5, 6]) = [0, 2] ∪ [5, 7] ∪ [10, 12]. (9)

A natural question. A natural question is: when is a class of bi-intervals closed
under addition? under linear combination? under other operations?

In this paper, we provide answers to these questions.

2 Closeness Under Addition: Definitions and
Results

Definition 1. For an interval a = [a, a], its width is defined as w(a) = a− a.



28 O. Kosheleva, V. Kreinovich, J. Contreras, Sums of Bi-Intervals

Definition 2. For two intervals a and b, the lower distance d(a,b) is the smallest
possible value of |a− b| when a ∈ a and b ∈ b.

Comments.

• If the intervals a = [a, a] and b = [b, b] intersect, then clearly the lower distance
is 0.

• If the intervals a and b are disjoint, then, without losing generality, we can
assume that a < b. Then d(a,b) = b− a.

• It is worth mentioning that the lower distance is different from the known Haus-
dorff distance

dH(A,B)
def
=

inf{r > 0 : (∀a ∈ A∃b ∈ B(d(a, b) ≤ r)) & (∀b ∈ B ∃a ∈ A(d(a, b) ≤ r))}. (10)

Indeed, for two closed bounded sets A and B, the Hausdorff distance is equal
to 0 if and only if the sets A and B coincide. In contrast, the lower distance
can be 0 when the intervals a and b are different but have a common point: for
example, dH([0, 1], [1, 2]) = 1 but d([0, 1], [1, 2]) = 0.

Definition 3. By a bi-interval, we mean either an interval or a union of two disjoint
intervals [a, a] ∪ [b, b].

Definition 4. Let f(x1, . . . , xn) be a function IRn → IR, and let X1, . . . , Xn be bi-
intervals. By the result f(X1, . . . , Xn) of applying the function f(X1, . . . , Xn) to bi-
intervals Xi, we mean the range

f(X1, . . . , Xn)
def
= {f(x1, . . . , xn) : x1 ∈ X1, . . . , xn ∈ Xn}. (11)

Comment. In particular:

• When f(x1, x2) = x1 + x2, we will call the set f(X1, X2) the sum of the bi-
intervals Xi, and denote this set by X1 + X2.

• When f(x1, . . . , xn) = c0 +c1 ·x1 + . . .+cn ·xn for some constants ci, we will call
the set f(X1, . . . , Xn) the linear combination of the bi-intervals Xi, and denote
this set by c0 + c1 ·X1 + . . . + cn ·Xn.

Definition 5. We say that a bi-interval is close if it is either an interval, or the union
a ∪ b of two disjoint intervals for which d(a,b) ≤ max(w(a), w(b)).

Comments. Since every infinite or semi-infinite interval has infinite width, this implies
that every bi-interval in which one of the intervals is infinite or semi-infinite is close.
In particular, every interval of the type (−∞, a] ∪ [b,∞) is close.

Proposition 1. A bi-interval a ∪ b is close if and only if its sum with itself is also a
bi-interval.

Comment. For reader’s convenience, all the proofs are placed in the special Proofs
section.

Proposition 2. The sum of two close bi-intervals is always close.

These two results lead to the following characterization of all classes of bi-intervals
which are closed under addition:

Theorem 1. Let C be a class of bi-intervals which is closed under addition. Then
every bi-interval from the class C is close.

Theorem 2. The class of all close bi-intervals is closed under addition.
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3 Closeness Under Linear Combination

Proposition 3. For each close bi-interval A = a ∪ b and for all c0 and c1, the
bi-interval

c0 + c1 ·A = (c0 + c1 · a) ∪ (c0 + c1 · b) (12)

is also close.

Together with closeness under addition, this result leads to the following characteri-
zation of all classes of bi-intervals which are closed under linear combination.

Theorem 3. Let C be a class of bi-intervals which is closed under linear combination.
Then every bi-interval from the class C is close.

Theorem 4. The class of all close bi-intervals is closed under linear combination.

4 What About Other Operations

The following result shows that linear combinations are the only operations that pre-
serve closeness of bi-intervals.

Theorem 5. For a continuously differentiable function f(x1, . . . , xn), the following
two conditions are equivalent:

• for any close bi-intervals X1, . . . , Xn, the set f(X1, . . . , Xn) is also a close bi-
interval;

• the function f(x1, . . . , xn) is linear, i.e.,

f(x1, . . . , xn) = c0 + c1 · x1 + . . . + cn · xn (13)

for some constants ci.

5 Proofs

Proof of Proposition 1. Let us prove that a bi-interval a ∪ b is close if and only if
its sum with itself is also a bi-interval.

If the bi-interval is an interval, then its sum with itself is also an interval hence a
bi-interval. So, it is sufficient to consider the case when the intervals a = [a, a] and
b = [b, b] are disjoint. In this case, without losing generality, we can assume that
a < b.

The sum S of the bi-interval with itself has the following form (in which we sorted
the three component intervals by their lower bounds):

[2a, 2a] ∪ [a + b, a + b] ∪ [2b, 2b]. (14)

If

2a < a + b (15)

and

a + b < 2b, (16)

then this sum is a union of three disjoint intervals, i.e., not a bi-interval; otherwise, it
is a union of two (or one) intervals, i.e., a bi-interval.
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The inequality (15) is equivalent to a−a < b−a, i.e., to w(a) < d(a,b). Similarly,
the inequality (16) is equivalent to b − b < b − a, i.e., to w(b) < d(a,b). Thus, both
inequalities are satisfied if and only if max(w(a), w(b)) < d(a,b), i.e., exactly if and
only if the bi-interval is not close.

The proposition is proven.

Proof of Proposition 2. Let us prove that the sum of two close bi-intervals is always
close.

Indeed, when we add intervals, their width increases (or at least not decreases),
while the lower distance only decreases (or at least remains the same), thus the in-
equality remains. The proposition is proven.

Proof of Proposition 3. Let us prove that for each close bi-interval a ∪ b and for
all c0 and c1, the bi-interval (c0 + c1 · a) ∪ (c0 + c1 · b) is also close.

Indeed, a shift by c0 does not change the lower distance and the widths, and
multiplication by c1 multiplies all these values by |c1|. Thus, for the new intervals, the
inequality describing closeness still remains.

The proposition is proven.

Proof of Theorem 5.

1◦. We have already proven that a linear combination of close bi-intervals is a close
bi-interval. So, to prove our theorem, it is sufficient to prove that if some continuously
differentiable function f(x1, . . . , xn) always transforms close bi-intervals into a close
bi-interval, this means that this function is linear.

So let us assume that f(x1, . . . , xn) is such a function, and let us prove that this
function is linear.

2◦. Let us start with the case when n = 1, i.e., when f(x1) is a continuously differen-
tiable function of one variable.

If the derivative f ′(x1) is always equal to 0, this means that this function is a
constant – and is, therefore, a linear function. Let us now consider the case when the
function is not constant, i.e., when there exist values x1 for which f ′(x1) 6= 0. Let us
pick any such value x0. Without losing generality, let us assume that f ′(x0) > 0; the
case when f ′(x0) < 0 can be treated the same way.

Since the derivative f ′(x1) is continuous, from the fact that f ′(x0) > 0 it follow
that the derivative is positive in some open neighborhood N of the point x0. So, in this
neighborhood N , the function f(x1) is strictly increasing. For an increasing function
f(x1), its range f([x, x]) on any interval is simply equal to [f(x), f(x)].

For any three points x−h, x, and x+h from the neighborhood N , the bi-intervals
[x− h, x− h] ∪ [x, x + h] and [x− h, x] ∪ [x + h, x + h] are close. The image

f([x− h, x− h] ∪ [x, x + h]) (17)

of the first close bi-interval is thus equal to [f(x−h), f(x−h)]∪ [f(x), f(x+h]). This
is clearly a bi-interval. The fact that this bi-interval is close means that

f(x)− f(x− h) ≤ f(x + h)− f(x). (18)

The fact that the image

f([x− h, x] ∪ [x + h, x + h]) = [f(x− h, f(x)], [f(x + h, f(x + h)] (19)

is close means that
f(x + h)− f(x) ≤ f(x)− f(x− h). (20)
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From the inequalities (18) and (20), we conclude that

f(x + h)− f(x) = f(x)− f(x− h). (21)

In particular, this means that for any value a and for all k for which a+ k · h ∈ N , we
have

f(a + h)− f(a) = f(a + 2h)− f(a + h) = . . . =

f(a + k · h)− f(a + (k − 1) · h). (22)

If we denote this common difference by d
def
= f(a + h)− f(a), we conclude that f(a +

i · h) = f(a) + i · d, i.e., that f(a + ∆) = f(a) + (d/h) ·∆ for all values ∆ of the type
∆ = i · h. In the limit h → 0, we conclude that the function f(x1) is linear in the
neighborhood N . Thus, in this neighborhood, the derivative f ′(x1) is constant.

This is true for every neighborhood in which the derivative is positive. Since the
derivative is continuous, it cannot jump to 0 or to a negative number, so the derivative
will be everywhere positive and thus, everywhere constant. So, the function f(x1) is
indeed linear.

3◦. Let us now consider the case when n = 2, i.e., when f(x1, x2) is a function of two
variables. By taking X2 = [x2, x2], we conclude, from Part 2 of this proof, that for
every x2, the function x1 → f(x1, x2) is linear, i.e., that

f(x1, x2) = c0(x2) + c1(x2) · x1 (23)

for some coefficients c0(x2) and c1(x2) which are, in general, different for different
values x2. Similarly, we can conclude that

f(x1, x2) = a0(x1) + a1(x1) · x2. (24)

Equating the two expressions for f(x1, x2), we conclude that for all x1 and x2, we have

c0(x2) + c1(x2) · x1 = a0(x1) + a1(x1) · x2. (25)

Let us consider two possible cases:

• when the function c1(x2) is constant, and

• when this function is not constant.

3.1◦. If the function c1(x2) is constant, i.e., if c1(x2) = c1 for all x2, then from (25)
for x1 = 0, we conclude that

c0(x2) = a0(0) + a1(0) · x2. (26)

Substituting this expression for c0(x2) and c1(x2) = c1 into the formula (N3), we
conclude that

f(x1, x2) = a0(0) + a1(0) · x2 + c1 · x1, (27)

i.e., that f(x1, x2) is a linear function of two variables.

3.2◦. Let us now consider the case when the function c1(x2) is not a constant, i.e.,
when there exist two values a2 and b2 for which c1(a2) 6= c1(b2). Substituting x2 = a2

and x2 = b2 into the formula (25), we get the following two equalities:

c0(a2) + c1(a2) · x1 = a0(x1) + a1(x1) · a2; (28)
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c0(b2) + c1(b2) · x1 = a0(x1) + a1(x1) · b2. (29)

We can view this as a system of two linear equations with two unknowns a0(x1) and
a1(x1). Subtracting these two equations, we conclude that

a1(x1) · (a2 − b2) = (c0(a2)− c0(b2)) + (c1(a2)− c1(b2)) · x1, (30)

hence, that

a1(x1) =
c0(a2)− c0(b2)

a2 − b2
+

c0(a2)− c0(b2)

a2 − b2
· x1. (31)

So, a1(x1) is a linear function of x1. Now, from (28), we conclude that

a0(x1) = c0(a2) + c1(a2) · x1 − a1(x1) · a2, (32)

and thus, that a0(x1) is also a linear function.
Substituting the linear expressions for a0(x1) and a1(x1) into the expression (N4),

we conclude that the function f(x1, . . . , xn) is bilinear, i.e., has the form

f(x1, x2) = f0 + f1 · x1 + f2 · x2 + f12 · x1 · x2, (33)

for some constant fi.

4◦. Similarly, we can prove that for all n, the function f(x1, . . . , xn) is multi-linear,
i.e., has the form

f(x1, . . . , xn) = f0 +

n∑
i=1

fi ·xi +
∑
i1<i2

fi1i2 ·xi1 ·xi2 +
∑

i1<i2<i3

fi1i2i3 ·xi1 ·xi2 ·xi3 + . . .+

f1...n · x1 · . . . · xn. (34)

5◦. Let us prove that for n = 2, the function f(x1, x2) must be linear. We will prove
it by contradiction.

Indeed, let us assume that the function f(x1, x2) is not linear, i.e., that it has
the form (33) with f12 6= 0. Our assumption about this function is that for all close
bi-intervals X1 and X2, the range f(X1, X2) is also a close bi-interval. Since a mul-
tiplication by a constant does not change closeness, this implies that the intervals
g(X1, X2) = f−1

12 · f(X1, X2) is also close, where

g(x1, x2)
def
= f−1

12 · f(x1, x2) = g0 + g1 · x1 + g2 · x2 + x1 · x2, (35)

and gi
def
= f−1

12 · fi. The expression for g(x1, x2) can be rewritten as

g(x1, x2) = (x1 + g2) · (x2 + g1) + (g0 − g1 · g2). (36)

Since adding a constant does not change closeness, this implies that the set

(X1 + g2) · (X2 + g1) (37)

is also a close bi-interval.
For any two close bi-intervals Y1 and Y2, the bi-intervals X1 = Y1 − g2 and X2 =

Y2 − g1 are also close. Thus, the range

(X1 + g2) · (X2 + g1) = ((Y1 − g1) + g1) · ((Y2 − g1) + g1) = Y1 · Y2 (38)
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is also a close bi-interval. So, we conclude that the product of two close bi-intervals
should also be a close bi-interval.

But this is not always true: e.g., for close bi-intervals Y1 = Y2 = [−0.4,−0.4] ∪
[0.6, 1.6], the product Y1 · Y2 is not a bi-interval: it is the union of three disjoint
intervals:

Y1 · Y2 = [−0.64,−0.24] ∪ [0.16, 0.16] ∪ [0.36, 2.56]. (39)

The contradiction shows that we cannot have f12 6= 0. So, f12 = 0, and the function
f(x1, x2) is linear.

6◦. Similarly to Part 5 of this proof, we can conclude that in the multi-linear function
f(x1, . . . , xn), all the coefficients fi1i2 should be equal to 0.

Let us show that all the terms fi1i2i3 should also be equal to 0. Indeed, if fi1i2i3 6= 0
for some ij , then substituting xi3 = 1 and xi = 0 for all i different from ij into the
general expression for a multi-linear function, we get a function of two variables

f(xi1 , xi3) = f0 + fi1 · xi1 + f2 · xi2 + fi3 + fi1i2i3 · xi1 · xi2 . (40)

This function of two variables should also transform close bi-intervals into close bi-
intervals, but we have already shown that, when we have a non-zero coefficient at the
product xi1 · xi2 , this is not possible.

Similarly, we can prove that all other non-linear coefficients fi1...ik should also be
equal to 0, and thus, that the function f(x1, . . . , xn) is indeed linear. The theorem is
proven.

6 Conclusions and Remaining Open Questions

Conclusions. In data processing, it is important to analyze how uncertainty in the
inputs affects the results of data processing. In the case of interval uncertainty, this
analysis is simplified by the fact that the sum, difference, and product of two intervals is
also an interval. In the linearized case, what is important is that the linear combination
of intervals is also an interval.

In some practical situations, the uncertainty in some (or all) inputs is character-
ized not by a single interval, but by a union of two (or more) intervals. Such unions
are known as multi-intervals, or, in the same of a union of two intervals, bi-intervals.
It is known that already the set of bi-intervals is not closed under addition. A nat-
ural question is: what classes of bi-intervals are closed under addition? under linear
combination? under other operations?

In this paper, we give a full characterization of all classes of bi-intervals which are
closed under addition and under linear combination. Namely, for each corresponding
bi-interval, the gap between the two united intervals cannot exceed the largest width
of the two intervals. We can such bi-intervals close. We also show that the class of all
close bi-intervals is not closed under any non-linear operation (such as multiplication).

Remaining open questions.

• We proved that the only operations preserving the class of all close bi-intervals
are linear ones. A natural question is: is there a subclass of the class of all close
bi-intervals which is closed under addition and multiplication? under addition,
multiplication, and inverse 1/x?
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• What if instead of bi-intervals – i.e., unions of at most two disjoint intervals –
we consider tri-intervals, i.e., unions of no more than 3 disjoint intervals? What
if we consider n-intervals – unions of no more than n disjoint intervals?
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