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Abstract

One of the applications of intervals is in describing experts’ degrees
of confidence in their statements. In this application, not all intervals
are realistically possible. To describe all realistically possible degrees of
confidence, we end up with a mathematical question of describing all
topologically closed classes of intervals which are closed under the appro-
priate minimum and maximum operations. In this paper, we provide a
full description of all such classes.
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1 Formulation of the Problem

Numerical and interval-valued fuzzy degrees: a brief reminder. One of the
main ideas behind traditional logic is that every statement is either true or false. In
the computer, “true” is usually represented as 1 and “false” as 0.

In practice, people are often not 100% confident in their statements. A natural
way to describe a person’s degree of confidence in a statement is to use numbers
intermediate between the value 1 (corresponding to full confidence) and the value 0
(corresponding to the complete absence of confidence). This representation of degrees
of confidence by numbers from the interval [0, 1] is one of the main ideas behind
fuzzy logic, a methodology for transforming imprecise (“fuzzy”) expert statements
into precise computer-understandable form; see, e.g., [1, 4, 8, 10, 11, 12].

If we have two statements A1 and A2 with degrees of confidence a1 and a2, then
our degree of confidence in a composite statement A1∧A2 (A1 and A2) cannot exceed
neither a1 not a2 and thus, must be smaller than or equal to min(a1, a2). Similarly, our
degree of confidence in a composite statement A1 ∨ A2 (A1 or A2) cannot be smaller
than either a1 or a2 and thus, must be greater than or equal to max(a1, a2).

The most natural way to estimate the experts’ degrees of confidence is to ask the
experts themselves. The problem is that just like the expert is not certain about
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his/her statement, he/she is also not confident about the exact degree of confidence.
From this viewpoint, it is more natural to characterize the degree of confidence not
by a single value, but by an interval of possible values, i.e., by a subinterval of the
interval [0, 1]; see, e.g., [8].

The minimum and maximum operations can be naturally extended to such inter-
vals, in the usual interval-computation way (see, e.g., [2, 7, 9]):

min([a1, b1], [a2, b2])
def
= {min(v1, v2) : v1 ∈ [a1, b1] and v2 ∈ [a2, b2]};

max([a1, b1], [a2, b2])
def
= {max(v1, v2) : v1 ∈ [a1, b1] and v2 ∈ [a2, b2]}.

Since both min and max are monotonic functions, these ranges are easy to compute
exactly:

min([a1, b1], [a2, b2]) = [min(a1, a2),min(b1, b2)]; (1)

max([a1, b1], [a2, b2]) = [max(a1, a2),max(b1, b2)]. (2)

Not all intervals are realistic. In principle, we can consider all possible subintervals
of the interval [0, 1], but in practice, not all of them appear. For example, the interval
[0, 1] would mean that the expert has no idea whether his/her statement is true or not
– but in this case, the expert would not make this statement.

Similarly, the interval [0.1, 0.9] is not very realistic. This simply means that;

• a person has some very small amount of positive knowledge – preventing the
expert from assigning degrees of confidence below 0.1, and

• a person has some very small amount of negative knowledge – preventing the
expert from assigning degrees of confidence larger than 0.9.

This interval is reasonable for a person in the street, who has very little knowledge
about the situation, but we do not expect this, in effect, “I don’t know” answer from
someone who we consider to be an expert.

It is desirable to describe the class of all realistic intervals. Traditionally, when
we design algorithms for processing expert opinions, we do not impose any restrictions
on possible intervals – these algorithms can process both:

• realistic intervals, i.e., intervals that an expert can produce, and

• unrealistic intervals, i.e., intervals which are mathematically possible but which
we do not expect to come from an expert.

Maybe if we can describe, in precise terms, which intervals are realistic and which
are not, this can help us avoid wasting time on thinking how to process unrealistic
intervals and concentrate on designing algorithms focused on realistic intervals only.

Examples. Let us start with some natural ideas on how the class of realistic intervals
can look like.

Based on the above argument, an interval is unreasonable if it is too wide. So, a
natural idea is to set up the maximum possible width δ of such an interval and only
consider an interval [a, b] realistic if b ≤ a+ δ.

Another option is to take into account that, according to empirical studies, the
degrees of confidence provided by an expert (which are also known as subjective prob-
abilities) are related to actual (objective) probabilities by a nonlinear dependence: for
example, we routinely overestimate the probability of rare events; see, e.g., [3, 5, 6].
In view of this, instead of considering the width of the original interval [a, b], maybe a
good idea is:
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• first, to transform this interval into probabilities by using an appropriate non-
linear transformation g(x), and

• then, to consider the width of the resulting interval [g(a), g(b)].

In this approach, we consider an interval [a, b] realistic if g(b) ≤ g(a) + δ, for some
constant δ > 0.

There may be other realistic classes.

Natural properties of a class of realistic intervals. To describe all possible
classes of realistic intervals, let us brainstorm on what are the natural properties of
such a class.

First, it is reasonable to require that this class be closed under the application
of operations (1) and (2) corresponding to “and” and “or”. If an expert has some
realistic interval of possible degree of confidence for a statement S1, and another
realistic interval for a statement S2, then for the composite statements “S1 and S2”
and “S1 or S2” we expect the intervals obtained by using formulas (1) and (2).

Another feature is related to the fact that close values of degree of confidence are
practically indistinguishable. We can meaningfully distinguish between, e.g., degree
of confidence 0.6 and 0.8 – which correspond to 3 and 4 on the scale from 0 to 5.
We can most probably meaningfully distinguish between degrees of confidence 0.7 and
0.8 – which correspond to 7 and 8 on the scale from 0 to 10. However, it is highly
improbable that someone can meaningfully distinguish between marks 80 and 81 on a
scale from 0 to 100 – i.e., between values 0.80 and 0.81. As a result, when we have a
sequence of realistic intervals that converges to a limit, this limit is indistinguishable
from all sufficiently close elements of this sequence – so it makes sense to consider this
limit interval realistic too. In other words, it makes sense to require that the class of
realistic intervals be topologically closed.

In this paper, we describe all resulting classes. The result is simple, and the proof
is straightforward.

2 Result

Definition. By a class of realistic intervals, we mean the class C of subintervals of
the interval [0, 1] which satisfies the following three conditions:

• the class C contains all numbers from this interval i.e., all degenerate intervals
[a, a],

• the class C is topologically closed, i.e., if this class contains a sequence of in-
tervals [an, bn] for which an → a and bn → b, then this class also contains the
limit interval [a, b], and

• the class C is closed under minimum and maximum operations (1) and (2).

Theorem. Let f be a monotonic right-continuous function from [0, 1] to [0, 1] such
that a ≤ f(a) for all a in [0, 1]. Then the class

Cf
def
= {[a, b] : a ≤ b ≤ f(a)} (3)

is a class of realistic intervals. Conversely, every class of realistic intervals occurs in
this way.
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Reminder. Right-continuous means that for every sequence an → a for which an ≥ a
for all n, we have f(an)→ f(a).

Comments.

• Right continuity is clearly not the most intuitively convincing concept. The
only reason why we mention right continuity in the formulation of the theorem
is that for a class C of realistic intervals to satisfy the three natural (and hopefully
intuitively convincing) conditions – as described in the Definition – is to have a
function f that is right continuous.

• In addition to describing the interval of possible values of the expert’s degrees
of confidence, a natural idea is to also assign, to each possible value v of the
degree of confidence, a number µ(v) from the interval [0, 1] indicating to what
extent the expert believes that this value v adequately described his/her opinion.
This construction – known as type-2 fuzzy set (see, e.g., [8]) – generalizes the
interval-valued degrees of confidence as described in this paper: namely, the
interval-valued degrees of confidence correspond to the case when:

– for all values v from the corresponding interval, we have µ(v) = 1, while

– for all values outside this interval, we have µ(v) = 0.

Operations of minimum and maximum can be naturally extended to such type-2
fuzzy sets. It is therefore desirable to extend our result to such type-2 sets –
i.e., to analyze which classes of type-2 sets are closed under similar operations.

Examples.

• The above-described class of all intervals of width not exceeding some threshold
δ > 0 can be described as the class Cf for the function f(a) = min(a+ δ, 1).

• The second above-described class – corresponding to width after a nonlinear
rescaling – corresponds to the function f(a) = g−1(min(g(a) + δ, 1)).

Proof of the Theorem.

1◦. Let us first show that for every monotonic right-continuous function f(a) for which
a ≤ f(a) for all a, the formula (3) defines a class of realistic intervals, i.e., that the
resulting class Cf :

• contains all numbers from this interval,

• is topologically closed, and

• is closed under minimum and maximum operations.

Let us prove these properties one by one.

1.1◦. Since a ≤ f(a), each interval [a, a] belongs to the class Cf .

1.2◦. Let us prove that the class Cf is topologically closed, i.e., that if [an, bn]→ [a, b]
and [an, bn] ∈ Cf for all n, then [a, b] ∈ Cf .

By definition of the class (3), for each n, we have bn ≤ f(an). Let us consider two
cases.

1.2.1◦. If for infinitely many values ank , we have ank ≤ a, then, due to monotonicity,
we have f(ank ) ≤ f(a), so for bnk ≤ f(ank ), we also have bnk ≤ f(a), and in the limit,
we get b ≤ f(a), i.e., [a, b] ∈ Cf .
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1.2.2◦. In the opposite case, when for all but finitely many indices n, we have a < an,
then, due to right continuity, we have f(an) → f(a). Thus, from bn ≤ f(an), in the
limit, we get b ≤ f(a), i.e., also [a, b] ∈ Cf .

1.3◦. Let us show that the class Cf is closed under the minimum operation.

Indeed, let us assume that [a1, b1] ∈ Cf and [a2, b2] ∈ Cf , i.e., b1 ≤ f(a1) and b2 ≤
f(a2). Let us prove that for [a, b]

def
= [min(a1, a2),min(b1, b2)], we also have [a, b] ∈ Cf .

Without losing generality, we can assume that a1 ≤ a2, so a = min(a1, a2) = a1. In
this case, b = min(b1, b2) ≤ b1 ≤ f(a1) = f(a), so indeed [a, b] ∈ Cf .

1.4◦. Finally, let us show that the class Cf is closed under the maximum operation.

Indeed, let us assume that [a1, b1] ∈ Cf and [a2, b2] ∈ Cf , i.e., b1 ≤ f(a1) and b2 ≤
f(a2). Let us prove that for [a, b]

def
= [max(a1, a2),max(b1, b2)], we also have [a, b] ∈ Cf .

Without losing generality, we can assume that a1 ≤ a2, so a = max(a1, a2) = a2. Here,
b2 ≤ f(a2), and since b1 ≤ f(a1) and f(a) is a monotonic function, f(a1) ≤ f(a2) and
thus, b1 ≤ f(a2). From b1 ≤ f(a2) and b2 ≤ f(a2), we conclude that b = max(b1, b2) ≤
f(a2) = f(a), so indeed [a, b] ∈ Cf .

2◦. Let C be a class of realistic intervals. Let us prove that this class is equal to Cf
for some function f(a).

Indeed, for each a, there are intervals [a, b] in the class C – e.g., the degenerate
interval [a, a]. Let us define

f(a)
def
= sup{b : [a, b] ∈ C}. (4)

The supremum f(a) is a limit of values bn for which [a, bn] ∈ C. Thus, since the class
C is topologically closed, the interval [a, f(a)] also belongs to this class C:

[a, f(a)] ∈ C. (5)

3◦. By definition of the supremum, no interval [a, b] with b > f(a) belongs to the class
C. On the other hand, if a ≤ b ≤ f(a), then the interval [a, b] indeed belongs to the
class C, since this interval is equal to the result min([b, b], [a, f(a)]) of applying the
operation (1) to intervals [b, b] and [a, f(a)] from this class – and the class C is closed
under this operation.

Thus, the class C indeed has the form (3).

4◦. Let us prove that the function f(a) defined by the formula (4) is indeed monotonic,
right-continuous, and satisfies the condition a ≤ f(a).

4.1◦. The last condition is the easiest to prove, since the class C contain an interval
[a, f(a)], and the upper endpoint of an interval is always great than or equal to its
lower endpoint.

4.2◦. Monotonicity is also easy: if a ≤ a′, then, since [a, f(a)] ∈ C, we have

max([a′, a′], [a, f(a)]) = [a′,max(a′, f(a)] ∈ C.

Thus, by definition of f(a′) as the largest b for which [a′, b] ∈ C, we conclude that
max(a′, f(a)) ≤ f(a′). Since f(a) ≤ max(a′, f(a)), we thus get f(a) ≤ f(a′).
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4.3◦. Let us now prove right continuity. Suppose that an → a and an ≥ a for all n.
Since the function f(a) is monotonic, we have f(a) ≤ f(an) for all n and thus, in the
limit:

f(a) ≤ lim inf f(an). (6)

Due to (3), for each n, we have [an, f(an)] ∈ C. For a subsequence f(ank )
that converges to the upper limit lim sup f(an), due to topological closeness, we have
[a, lim sup f(an)] ∈ C. By definition (4) of the function f(a), this means that

lim sup f(an) ≤ f(a). (7)

Since we always have lim inf f(an) ≤ lim sup f(an), inequalities (6) and (7) imply that

f(a) ≤ lim inf f(an) ≤ lim sup f(an) ≤ f(a),

thus
lim inf f(an) = lim sup f(an) = f(a).

Since the lower and upper limits coincide, this means that the sequence f(an) indeed
has a limit, and this limit is equal to f(a). Right continuity is now proven.

The proposition is proven.
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