
Approximate Version of Interval Computation Is

Still NP-Hard∗

Vladik Kreinovich and Olga Kosheleva
University of Texas at El Paso
El Paso, TX 79968, USA

vladik@utep.edu,olgak@utep.edu
†

Abstract

It is known that, in general, the problem of computing the range of a
given polynomial on given intervals is NP-hard. For some NP-hard op-
timization problems, the approximate version – e.g., if we want to find
the value differing from the maximum by no more than a factor of 2 –
becomes feasible. Thus, a natural question is: what if instead of comput-
ing the exact range, we want to compute the enclosure which is, e.g., no
more than twice wider than the actual range? In this paper, we show that
this approximate version is still NP-hard, whether we want it to be twice
wider or k times wider, for any k.

Keywords: interval computations, NP-hardness, approximate solutions
AMS subject classifications: 65G40, 03D15, 68Q15, 68Q17

1 Formulation of the Problem

Need for interval computations. In practice, we often need to estimate the value
of a difficult-to-measure quantity y by using its known relation y = f(x1, . . . , xn)
with easier-to-measure quantities x1, . . . , xn. This relation is usually described by a
continuous function f(x1, . . . , xn).

Measurements are never 100% accurate. The measurement result x̃i is, in general,
different from the actual (unknown) value xi of the corresponding quantity. Often,

the only information that we have about the measurement error ∆xi
def
= x̃i − xi is the

upper bound ∆i on its absolute value: |∆xi| ≤ ∆i; see, e.g., [11]. In this case, once we
know the measurement result x̃i, the only information that we have about the actual
value xi is that this value belongs to the interval [xi, xi], where xi = x̃i − ∆i and
xi = x̃i + ∆i.

∗Submitted: June 4, 2020; Revised: May 30, 2021; Accepted: June 3, 2021.
†This work was supported in part by the National Science Foundation grants 1623190

(A Model of Change for Preparing a New Generation for Professional Practice in Computer
Science) and HRD-1242122 (Cyber-ShARE Center of Excellence).
The authors are thankful to the anonymous referees for valuable suggestions.

43

vladik@utep.edu, olgak@utep.edu

44V. Kreinovich, O. Kosheleva Approximate Interval Computation Is NP-Hard

For different values xi from these intervals, we get, in general, different values of
y = f(x1, . . . , xn). It is therefore important to find the range of possible values of y,
i.e., find the interval

[y, y] = f([x1, x1], . . . , [xn, xn]) = {f(x1, . . . , xn) : xi ∈ [xi, xi]}. (1)

The problem of computing this range based on the function f(x1, . . . , xn) and intervals
[xi, xi] is known as the main problem of interval computations; see, e.g., [5, 7, 8].

The main problem of interval computations is known to be NP-hard. It is
known that the main problem of interval computations is NP-hard already for poly-
nomials f(x1, . . . , xn). This result was first proven by A. A. Gaganov in [3, 4]; see
also [6].

Specifically, the input to this problem consists of:

• a polynomial f(x1, . . . , xn) and

• n intervals [xi, xi] with rational endpoints xi and xi.

When we say that a polynomial is given, we mean that we are given an expression ob-
tained from the variables and rational-valued constants by using addition, subtraction,
and multiplication. For example, (1 + x1) · (1 + x2) · (1.2− x3) is such an expression.

The fact that this problem is NP-hard means that – unless P = NP, which most
computer scientists believe to be impossible – no polynomial-time (feasible) algorithm
can solve all the instances of the interval computation problem. Since no polynomial-
time algorithm can always compute the exact range, the currently used polynomial-
time algorithms compute enclosures, i.e., intervals [Y , Y] that contain (enclose) the
desired range: [y, y] ⊆ [Y , Y].

What about an approximate version of this problem? The main problem of
interval computation is, in effect, an optimization problem: y is the minimum of the
functions f(x1, . . . , xn) under the constraints xi ∈ [xi, xi], while y is the corresponding
maximum.

It is known that for many NP-hard optimization problems, their approximate
versions can be solved by polynomial-time algorithms; see, e.g., [1]. For example,
it is known that the following knapsack optimization problem is NP-hard. We are
given the prices p1, . . . , pn of n items, their weights w1, . . . , wn, and the knapsack’s
capacity W . We need to find, among all selections S ⊆ {1, . . . , n} that can fit into the
knapsack (i.e., for which

∑
i∈S

wi ≤ W), the selection with the largest possible overall

price
∑
i∈S

pi. Interestingly, for every k < 1, there are polynomial-time algorithms for

finding a selection for which the overall price is larger than k times the maximum.
Similar polynomial-time algorithms are known for approximate versions of many

other NP-hard optimization problems. A natural question is: can an approximate
version of interval computations be solved by a polynomial-time algorithm? Gaganov’s
result [3, 4] actually shows that computing an enclosure that approximates a bound
by any given additive constant and limited multiplicative factor is still NP-hard.

In this paper, we provide a further strengthening of Gaganov’s result: namely, we
prove that computing an enclosure that approximates a bound by any given multi-
plicative factor is still NP-hard.

Reliable Computing 28, 2021 45

2 Main Result

Proposition. For any k > 1, the following problem is NP-hard:

• given: a polynomial f(x1, . . . , xn) and rational-valued intervals [xi, xi], i =
1, . . . , n,

• compute an enclosure [Y , Y] for the range (1) whose width is no more than k
times larger than the width of the actual range [y, y]: Y − Y ≤ k · (y − y).

Proof.

1◦. By definition, a problem is NP-hard if every problem from the class NP can be
reduced to this problem; see, e.g., [6, 10]. Thus, a usual way to prove that a problem is
NP-hard is to show that a known NP-hard problem P0 can be reduced to this problem.
Indeed, in this case, every problem from the class NP can be reduced to P0, and since
P0 can be reduced to our problem, we can thus conclude that every problem from the
class NP can be reduced to our problem as well.

As a known NP-hard problem P0, we will consider the following partition problem:

• given positive integers s1, . . . , sn,

• find values εi ∈ {−1, 1} for which
n∑

i=1

εi · si = 0.

Equivalently, we want to divide the given set of positive integers into two parts whose
sums are equal: the first part is formed by integers si with εi = −1, the second part
is formed by the remaining integers.

2◦. We want to reduce a given instance of the partition problem – which is character-
ized by the sequence of positive integers s1, . . . , sn – to an instance of our problem.

For this purpose, let us first consider, for each instance (s1, . . . , sn), an auxiliary
problem – the problem of estimating the range of the variance

v(x1, . . . , xn) =
1

n
·

n∑
i=1

x2
i −

(
1

n
·

n∑
i=1

xi

)2

(2)

when xi ∈ [−si, si]. This auxiliary problem – which is known to be NP-hard [2, 9] –
will later be used to form the desired instance of our problem.

The value of the variance is always non-negative, and 0 is attained when all xi

are 0s. Thus, the lower endpoint v of the range [v, v] of the range of the function
v(x1, . . . , xn) is equal to 0.

Here, x2
i ≤ s2i , so

1

n
·

n∑
i=1

x2
i ≤ S

def
=

1

n
·

n∑
i=1

s2i , thus v(x1, . . . , xn) ≤ S. When the

corresponding instance of problem P0 has a solution εi, then for xi = εi · si, the value
S is attained: v(x1, . . . , xn) = S. Thus, in this case, v = S.

Let us show that if the corresponding instance of the problem P0 does not have a

solution, then we have v < S − 1

4n2
. We will prove this by contraposition: namely,

we will prove that if v ≥ S − 1

4n2
, then the corresponding instance of the problem P0

has a solution. Indeed, every continuous function attains its maximum at some point
in a compact set – in particular, in a box [−s1, s1]× . . .× [−sn, sn]. Thus, there exists

a tuple (x1, . . . , xn) for which v(x1, . . . , xn) ≥ S − 1

4n2
, thus

S ≤ v(x1, . . . , xn) +
1

4n2
. (3)

46V. Kreinovich, O. Kosheleva Approximate Interval Computation Is NP-Hard

Then, for each i from 1 to n, we have

1

n
· s2i +

1

n
·
∑
j 6=i

s2j = S ≤ 1

n
·

n∑
j=1

x2
j −

(
1

n
·

n∑
j=1

xj

)2

+
1

4n2
.

Since x2
j ≤ s2j for all j 6= i, we thus get

1

n
· s2i +

1

n
·
∑
j 6=i

s2j ≤
1

n
· x2

i +
1

n
·
∑
j 6=i

s2j +
1

4n2
,

hence
1

n
· s2i ≤

1

n
· x2

i +
1

4n2

and

x2
i ≤ s2i ≤ x2

i +
1

4n
and so

0 ≤ s2i − x2
i = s2i − |xi|2 = (si − |xi|) · (si + |xi|) ≤

1

4n
.

Here, si is a positive integer, so si ≥ 1 hence si + |xi| ≥ 1 and thus,

0 ≤ si − |xi| ≤
1

4n
· 1

si + |xi|
≤ 1

4n
.

The right-hand side is smaller than 1, so, for εi = sign(xi) (which is 1 if xi > 0, −1 if
xi < 0, and 0 if xi = 0), we get

|si · εi − xi| ≤
1

4n · (si + |xi|)
≤ 1

4n
.

Thus, ∣∣∣∣∣
n∑

i=1

si · εi −
n∑

i=1

xi

∣∣∣∣∣ ≤
n∑

i=1

|si · εi − xi| ≤ n · 1

4n
=

1

4
. (4)

Also, from (3), taking into account that x2
i ≤ s2i , we conclude that

1

n
·

n∑
i=1

s2i ≤
1

n
·

n∑
i=1

x2
i −

(
1

n
·

n∑
i=1

xi

)2

+
1

4n2
≤ 1

n
·

n∑
i=1

s2i −

(
1

n
·

n∑
i=1

xi

)2

+
1

4n2
,

thus (
1

n
·

n∑
i=1

xi

)2

≤ 1

4n2

hence ∣∣∣∣∣ 1n ·
n∑

i=1

xi

∣∣∣∣∣ ≤ 1

2n
,

thus ∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ ≤ 1

2
. (5)

From (4) and (5), we conclude that∣∣∣∣∣
n∑

i=1

si · εi

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

si · εi −
n∑

i=1

xi

∣∣∣∣∣+

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ ≤ 1

4
+

1

2
< 1.

Reliable Computing 28, 2021 47

Since the sum
n∑

i=1

si · εi is an integer, this means that this integer is equal to 0, i.e.,

that the values εi indeed solve the given instance of the problem P0.

3◦. Now, let us consider a polynomial

f(x1, . . . , xn) = (v(x1, . . . , xn))N = v(x1, . . . , xn) · . . . · v(x1, . . . , xn) (N times),

where N is such that (
1− 1

4n2 · S

)N

<
1

k
,

e.g.,

N =

ln(k)

− ln

(
1− 1

4n2 · S

)
+ 1.

Asymptotically, N ∼ const · n2 · S, so the length of this polynomial’s description is
bounded by a polynomial of n. Thus, the reduction of the partition problem to our
problem is polynomial-time.

If the original instance of the problem P0 has a solution, then the range [y, y] of

the function f(x1, . . . , xn) is equal to
[
0, SN

]
, and thus, the width of any enclosure

[Y , Y] for this range is at least SN .
If the original instance has no solutions, then the range [y, y] is contained in[

0,

(
S − 1

4n2

)N
]

, so its width is smaller than or equal to

(
S − 1

4n2

)N

= SN ·
(

1− 1

4n2 · S

)N

<
1

k
· SN .

Since the width of the enclosure [Y , Y] is no more than k times the width of the actual
range, this width is thus smaller than SN .

So, if we had an algorithm computing such a no-more-than-k-times wider enclosure
[Y , Y], we would be able to tell whether the original instance of the problem P0 has a
solution or not:

• if Y − Y ≥ SN , then the original instance has a solution,

• otherwise, the original instance does not have a solution.

Thus, we reduced the NP-hard problem P0 to our problem, hence our problem is also
NP-hard.

The proposition is proven.

Remaining open problems. The interval computation problem is NP-hard even if
we limit ourselves to quadratic polynomials. In our proof that an approximate version
is NP-hard we used polynomials of arbitrary degrees. What if we limit ourselves to
quadratic polynomials only? Will the problem still be NP-hard for all k?

Similar questions can be asked about other – non-polynomial – situations when
computing the exact range is NP-hard. For example, it is known that if we only
know intervals of possible values of all components aij of a matrix, then computing
the range of possible eigenvalues is NP-hard. What if we consider enclosures for this
range which are no more than k times wider than the actual range? Will the problem
still be NP-hard?

48V. Kreinovich, O. Kosheleva Approximate Interval Computation Is NP-Hard

References

[1] G Ausiello, P. Crescenzi, and M. Protasi, “Approximate solutions of NP opti-
mizaton problems”, Theoretical Computer Science, 1995, Vol. 150, pp. 1–55.

[2] S. Ferson, L. Ginzburg, V. Kreinovich, L. Longpré, and M. Aviles, “Computing
variance for interval data is NP-hard”, ACM SIGACT News, 2002, Vol. 33, No. 2,
pp. 108–118.

[3] A. A. Gaganov, Computational complexity of the range of the polynomial in several
variables, Leningrad University, Math. Department, M.S. Thesis, 1981 (in Rus-
sian).

[4] A. A. Gaganov, “Computational complexity of the range of the polynomial in
several variables”, Cybernetics, 1985, pp. 418–421.

[5] L. Jaulin, M. Kiefer, O. Dicrit, and E. Walter, Applied Interval Analysis, Springer,
London, 2001.

[6] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Complexity and
Feasibility of Data Processing and Interval Computations, Kluwer, Dordrecht,
1998.

[7] G. Mayer, Interval Analysis and Automatic Result Verification, de Gruyter,
Berlin, 2017.

[8] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis,
SIAM, Philadelphia, 2009.

[9] H. T. Nguyen, V. Kreinovich, B. Wu, and G. Xiang, Computing Statistics under
Interval and Fuzzy Uncertainty, Springer Verlag, Berlin, Heidelberg, 2012.

[10] C. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, Mas-
sachusetts, 1994.

[11] S. G. Rabinovich, Measurement Errors and Uncertainties: Theory and Practice,
Springer, New York, 2005.

	Formulation of the Problem
	Main Result

