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Abstract

One of the main problems of interval computations is, given a function
f and intervals, to compute the range of this function over the intervals.
For a linear function, we can feasibly estimate its range, but for quadratic
(and for more complex) functions, the problem of computing the exact
range is NP-hard. So, if we limit ourselves to feasible algorithms, we
have to compute enclosures instead of the actual ranges. It is known
that asymptotically the smallest possible excess width of these enclosures
is O(∆2), where ∆ is the largest radius (half-width) of the input inter-
vals. This asymptotics is attained for the Mean Value methods, which are
among most widely used methods for estimating the range.

The excess width is caused by quadratic (and higher order) terms in the
function f . It is therefore desirable to come up with an estimation method
for which the excess width decreases when the maximum of this quadratic
term decreases. In this paper, we show that, by using Grothendieck in-
equality, we can create a modification of the Mean Value methods in which
the quadratic term is estimated accurately modulo a small multiplicative
constant – i.e., in which the excess width is guaranteed to be bounded by
3.6 times the size of the quadratic term.
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1 Formulation of the Problem

Interval computations: brief reminder. One of the main problems of interval
computations (see, e.g., [11]) is:

• given: a function f(x1, . . . , xn) and intervals xi = [xi, xi] = [x̃i −∆i, x̃i + ∆i],
1 ≤ i ≤ n,
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• compute: the range y = f(x1, . . . ,xn) = {f(x1, . . . , xn) : xi ∈ xi for all i}.
Computing the exact range is known to be NP-hard, even for quadratic f(x1, . . . , xn);
see, e.g., [3, 4, 10]. This means, crudely speaking, that (unless P = NP), we cannot
hope to have a feasible (i.e., polynomial-time) algorithm that always computes the
exact range of a given function.

Since we cannot feasibly compute the exact range y, instead, we compute an
enclosure Y ⊇ y, with excess width wid(Y) − wid(y) > 0, and we try to make this
excess width as small as possible.

Moreover, if we fix some accuracy ε > 0 and want to compute the endpoints y and

y of the desired range y = [y, y] with this accuracy – i.e., to compute values Y and Y

for which
∣∣y − Y ∣∣ ≤ ε and

∣∣y − Y ∣∣ ≤ ε – this problem remains NP-hard [3, 4, 10]. The
only way to make the problem feasible is to have different approximation accuracies
for different problems.

Mean Value methods. Among the most widely used methods of efficiently com-
puting Y are the Mean Value methods:

Y = f(x̃1, . . . , x̃n) +

n∑
i=1

∂f

∂xi
(x1, . . . ,xn) · [−∆i,∆i].

In these methods, the ranges of the derivatives f,i
def
=

∂f

∂xi
can be estimated, e.g., by

using the following technique known as natural interval extension or straightforward
interval computations (see, e.g., [11]):

• we parse the expression f,i, i.e., represent it as a sequence of elementary arith-
metic operations, and

• we replace each operation with numbers by the corresponding operation of in-
terval arithmetic [11].

The Mean Value methods have excess width O(∆2), where ∆
def
= max ∆i.

Can we get better enclosures? Can we come up with more accurate enclo-
sures? It is known that we cannot get too drastic an improvement: for any ε > 0,

even for quadratic functions f(x)
def
= f(x1 . . . , xn), computing the interval range is NP-

hard and therefore (unless P=NP), a feasible algorithm with excess width O(∆2+ε) is
impossible; see, e.g., [9].

What we can do is try to decrease the overestimation of the quadratic term.

What we do in this paper. We show that it is possible to decrease the overes-
timation of the quadratic term if we use an inequality proven by A. Grothendieck in
1953 [5, 13].

2 Main Idea

Mean Value methods: reminder. The Mean Value methods are based on the
following first order Mean Value Theorem:

f(x̃+ ∆x) = f(x̃) +
n∑
i=1

f,i(x̃+ η) ·∆xi for some ηi ∈ [−∆i,∆i].
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To get an enclosure, we estimate each term in this expression one by one, and then
use interval arithmetic to combine these estimates.

Specifically, since ηi ∈ [−∆i,∆i], we conclude that x̃i+ηi ∈ [x̃i−∆i, x̃i−∆i] = xi.
Thus, f,i(x̃+ η) ∈ f,i(x1, . . . ,xn). From this inclusion and from ∆xi ∈ [−∆i,∆i], we
conclude that

f,i(x̃+ η) ·∆xi ∈ f,i(x1, . . . ,xn) · [−∆i,∆i].

By adding the value f(x̃) and n interval bounds on f,i(x̃+ η) ·∆xi, we conclude that

f(x̃+ ∆x) ∈ f(x̃1, . . . , x̃n) +

n∑
i=1

f,i(x1, . . . ,xn) · [−∆i,∆i].

How to get a more accurate estimate: natural idea. The first order Mean
Value Theorem uses first order terms in the Taylor expansion. It is known that the
more terms in the Taylor expansion we use, the more accurately we approximate the
original function. Let us use this idea and utilize the following third order Mean Value
Theorem (see, e.g., [8]):

f(x̃+ ∆x) = f(x̃) +

n∑
i=1

f,i(x̃) ·∆xi +
1

2
·

n∑
i,j=1

f,ij(x̃) ·∆xi ·∆xj+

1

6
·

n∑
i,k,k=1

f,ijk(x̃+ η) ·∆xi ·∆xj ·∆xk.

(for completeness, the derivation of this formula is given in the Appendix).

Then, we can estimate the ranges of linear, quadratic, and cubic terms in this
formula, and add up the enclosures for these ranges.

The range of the linear part f(x̃) +
n∑
i=1

f,i(x̃) ·∆xi can be explicitly described as

[ỹ −∆, ỹ + ∆], where ỹ
def
= f(x̃) and ∆ =

n∑
i=1

|f,i(x̃)| ·∆i.

The range of the cubic part
1

6
·

n∑
i,j,k=1

f,ijk(x̃+η) ·∆xi ·∆xj ·∆xk can be estimated

via straightforward interval computations; the estimate is O(∆3)� O(∆2).

The only non-trivial task is estimating the range [−Q,Q] of the quadratic part
n∑

i,j=1

aij ·∆xi ·∆xj , where aij
def
=

1

2
· f,ij(x̃), on the box [−∆1,∆1]× . . .× [−∆n,∆n].

We will show that the Grothendieck inequality will help in estimating the range of
this quadratic expression. To explain how it can help, let us first recall what is
Grothendieck inequality.

Grothendieck inequality: reminder. To introduce Grothendieck inequality,
we will follow [13] and consider the following auxiliary computational problem: esti-
mate the value

Q′ = max

{
n∑

i,j=1

bij · zi · tj : zi, tj ∈ {−1, 1}

}
.

This problem is known to be NP-hard; see, e.g., [10, 12]. This means that we cannot
always feasibly compute the value Q′. Instead, we compute approximations to Q′.
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One way to get such approximations is to take into account that, in general,
discrete optimization problems are more complex than similar continuous ones; see,
e.g., [10, 12]. One can easily observe that in the problem of estimating Q′, the discrete
set {−1, 1} is a unit sphere in 1-D Euclidean space, and that in larger dimensions, a
unit sphere is connected (hence not discrete). So, Grothendieck’s idea was to consider
zi and tj from the unit sphere S in a Hilbert space (i.e., in effect, in an infinite-
dimensional Euclidean space), i.e., to compute the value

Q′′
def
= max

{
n∑

i,j=1

bij · 〈zi, tj〉 : zi, tj ∈ S

}
,

where 〈a, b〉 denotes the scalar product: for two elements a = (a1, . . . , an, . . .) and

b = (b1, . . . , bn, . . .) in the Hilbert space, 〈a, b〉 def
=
∞∑
i=1

ai · bi.

Since we can have all zi and tj equal to ±e for some unit vector e, the maximum
in Q′′ is always larger than or equal to the maximum in Q′: Q′ ≤ Q′′.

Grothendieck showed that for some universal constant KG ∈ [1, 1.782], we have
1

KG
·Q′′ ≤ Q′. Thus, we have

1

KG
·Q′′ ≤ Q′ ≤ Q′′.

It turns out that a feasible ellipsoid-based method – similar to feasible ellipsoid
methods used in linear programming – can compute Q′′ [1, 13]. Thus, by using
Grothendieck inequality, we can feasibly estimate the value Q′ modulo a small multi-
plicative constant.

How to use this result to estimate Q. We want to estimate the range [−Q,Q]

of the expression
n∑

i,j=1

aij · ∆xi · ∆xj on [−∆1,∆1] × . . . × [−∆n,∆n]. We can make

this problem closer to the Grothendieck’s problem if we introduce new variables zi
def
=

∆xi/∆i. For these variables, we have zi ∈ [−1, 1], ∆xi = ∆i · zi, and the above
quadratic form takes the following form:

n∑
i,j=1

bij · zi · zj , with bij
def
= aij ·∆i ·∆j .

Thus, we can conclude that Q = max {B(z) : zi ∈ [−1, 1]} , where B(z)
def
= b(z, z) and

b(z, t)
def
=

n∑
i,j=1

bij ·zi ·tj . Grothendieck’s inequality enables us to estimate the maximum

Q′ of the bilinear function b(z, t): Q′ = max{b(z, t) : zi ∈ {−1, 1}, tj ∈ {−1, 1}} on
the values ±1.

There are two differences between Q and Q′:

• in Q, we maximize b(z, z) as opposed to b(z, t) in Q′, and

• in Q, we maximize over the whole interval [−1, 1] as opposed to over the two-
valued set {−1, 1} in Q′.

The second difference is not important, since a bilinear function b(z, t) is linear in each
of its variables and thus, attains its maximum at endpoints. Hence,

Q′ = max{b(z, t) : zi ∈ [−1, 1], tj ∈ [−1, 1]}.

Now, the only remaining difference is between maximizing B(z) = b(z, z) and b(z, t).
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Clearly, since maximizing over all possible pairs (z, t) includes maximizing over
pairs (z, z), we have Q ≤ Q′. Vice versa, to bound Q′ (maximum of b(z, t)) in terms
of Q (maximum of B(z)), it is reasonable to use a known expression of a bilinear form
b(z, t) in terms of its diagonal terms B(z) = b(z, z): b(z, t) = B((z+t)/2)−B((z−t)/2).
Because of this expression, the maximum Q′ of the absolute value of b(z, t) cannot
exceed twice the maximum Q of the expression B(z): Q′ ≤ 2Q. Since Q ≤ Q′, we get
Q′/2 ≤ Q ≤ Q′.

Now, from the Grothendieck inequality K−1
G ·Q

′′ ≤ Q′ ≤ Q′′, we can conclude that

Q′′

2KG
≤ Q ≤ Q′′.

In other words, by feasibly computing the value Q′′, we can feasibly estimate the
quadratic-expression bound Q accurately – modulo a small constant factor 2KG ≤ 3.6.

Thus, we arrive at the following algorithm.

3 Resulting Algorithm

Preamble. According to the third order Mean Value Theorem, for ∆xi ∈ [−∆i,∆i],
we have: f(x̃+ ∆x) = T1 + T2 + T3, where:

T1
def
= f(x̃) +

n∑
i=1

f,i(x̃) ·∆xi;

T2
def
=

n∑
i,j=1

aij ·∆xi ·∆xj , where aij =
1

2
· f,ij(x̃); and

T3
def
=

1

6
·

n∑
i,j,k=1

f,ijk(x̃+ η) ·∆xi ·∆xj ·∆xk.

Algorithm. As an enclosure for the range of f , we take the sum of enclosures for
T1, T2, and T3.

• For T1, we compute the exact range in linear time O(n).

• For T3, we use straightforward interval computations and get an enclosure of
width O(∆3)� O(∆2).

• To estimate the range [−Q,Q] of the quadratic term T2 =
n∑

i,j=1

aij ·∆xi ·∆xj ,

we do the following:

– we compute an auxiliary matrix bij = aij ·∆i ·∆j , and

– we use the ellipsoid method described in [1] to compute the value

Q′′
def
= max

{
n∑

i,j=1

bij · 〈zi, tj〉 : zi, tj ∈ S

}
.

Then,
Q′′

2KG
≤ Q ≤ Q′′, with 2 ≤ 2KG ≤ 3.6.
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Discussion: why this is better than the Mean Value methods. We still
get excess width O(∆2), but this time, we overestimate the quadratic terms by no
more than a known constant factor.

Remaining open problem. In interval computing, it is often beneficial to use
slopes instead of derivatives; see, e.g., [6]. It would be great to extend Grothendieck-
based techniques to slope-based methods.
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A Third Order Mean Value Theorem: Deriva-
tion

According to the Lagrange form of the Taylor’s theorem (see, e.g., [2, 7]), for each
three times differentiable function F (x) of one variable, and for all a 6= b, there exists
a point η between a and b for which

F (b) = F (a) + F ′(a) · (b− a) +
1

2
· F ′′(a) · (b− a)2 +

1

6
· F ′′′(κ) · (b− a)3.

By applying this formula to an auxiliary function

F (x) = f(x̃1 + x · (x1 − x̃1), . . . , x̃n + x · (xn − x̃n))

and the values a = 0 and b = 1, and taking into account that F (0) = f(x̃1, . . . , x̃n)
and F (1) = f(x1, . . . , xn), we get the desired expression for the third order Mean
Value Theorem, with ηi = κ · (xi − x̃i). Since κ ∈ (0, 1) and |xi − x̃i| ≤ ∆i, we have
ηi ∈ [−∆i,∆i].


