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Abstract

In some practical situations, we know a set of possible values of a
physical quantity – a set which is not an interval. Since computing with
sets is often complicated, it is desirable to approximate this set by an
easier-to-process set: namely, with an interval. In this paper, we describe
intervals which are the closest approximations to a given set.
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1 Formulation of the Problem

Why do we need 1-D sets beyond intervals. For each physical quantity, we
would like to know which real numbers are possible values of this quantity. For some
quantities, the possible values come from fundamental physics. For example, the
possible values of velocity form an interval [0, c], where c is the speed of light. For
other quantities – e.g., for size of some insect species – we have to rely on experts.

An expert may provide us with a possible interval range. Different experts can
provide different range. Some of these ranges may be non-intersecting: for example,
one expert provides a range of adult cockroach sizes in St. Petersburg, Russia, where
they are reasonably small, while another expert provides a range of adult cockroach
sizes in El Paso, Texas, where the cockroaches are much larger.

If we trust all the experts, then we consider all the values supplied by all the
experts as possible values of the corresponding quantity. Thus, after asking all the
experts, we end up with the union of their answer sets as the desired set of possible
values of the quantity – and this union of intervals is not necessarily an interval itself:

• In some cases, if two values a < b are possible, then all intermediate values from
the interval [a, b] are also possible.

• However, this is not always the case: when a species consists of two populations
of different sizes, the set of possible sizes is the union of two intervals; see, e.g.,
[5] and references therein.
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It is often desirable to approximate a set by an interval. Processing sets
is sometimes computationally complicated; see, e.g., [2]. It is therefore desirable to
approximate the given set by an easier-to-process set, i.e., by an interval.

From the interval computation viewpoint, a reasonable approximation is
the interval hull. In the spirit of interval computation (see, e.g., [1, 4]), a reasonable
idea is to produce an interval enclosure for the desired set S. The narrowest such
enclosure is the interval hull [inf S, supS].

What if we simply want to approximate? In some applications, it is not nec-
essary to have an enclosure, we simply want an approximation – but, of course, we
want the closest possible approximation. In this paper, we describe a solution to this
approximation problem.

We hope for future applications. At this point, all we do is prove a mathematical
result – describing which interval is the best approximation to a given set. We hope
that – since Hausdorff distance is important – this result will be helpful in future
applications.

2 Definitions and the Main Result

How to gauge distance between sets. As distance between two sets A and B, we
will take the Pompeiu-Hausdorff distance (also known as Hausdorff distance)

dH(A,B) = max

(
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

)
,

where the distance d(a,B) between an element a and a set B is defined in the usual
way, as the smallest of the distances d(a, b) between a and different elements b ∈ B:

d(a,B) = inf
b∈B

d(a, b).

Hausdorff distance can be alternatively defined as the infimum of all the values ε > 0
for which the following two properties are satisfied:

• for every element a ∈ A, there exists an ε-close element b ∈ B, i.e., an element
b for which d(a, b) < ε, and

• for every element b ∈ B, there exists an ε-close element a ∈ A.

Intuitive meaning of Hausdorff distance in this case. Let us assume that the
actual range of values of the physical quantity is an interval I. The experts do not
provide us with exactly this interval, since their estimates are approximate, with some
accuracy ε > 0. Because of this approximate character of expert estimates, they
provide us with a set S which is somewhat different from the interval I.

We would like to make sure, however:

• that the experts’ answers are correct – i.e., that each value s ∈ S provided by
an expert is ε-close to some possible value x ∈ I, and

• the experts’ answers are complete – i.e., that each actually possible value x ∈ I
is ε-close to one of the values s ∈ S provided by the experts.
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As we can see, this means exactly that dH(S, I) ≤ ε.

We want the closest possible interval. We do not know the experts’ accuracy
ε > 0. In such situations, it is reasonable to use the Maximum Compatibility Method
[3, 6, 7], and look for the smallest possible value ε, i.e., to look for the interval I for
which the distance dH(S, I) is the smallest possible:

dH(S, I) = min
J
dH(S, J),

where the minimum is taken over all intervals J .

Main result. Now, we are ready to formulate our main result.

Definition.

• Let S be a bounded set, and let inf S ≤ a < b ≤ supS. We say that the open
interval (a, b) is a gap in the set S if (a, b) ∩ S = ∅.

• For each set S, by δ(S), we mean the supremum of the half-widths
b− a

2
of all

the gaps of the set S.

Proposition. Let S be a bounded set. Then, an interval I = [x, x] is the closest to
the set S if and only if | inf S − x| ≤ δ(S) and | supS − x| ≤ δ(S). For each of these
intervals, we have dH(S, I) = δ(S).

Comment. The proof of this result is given in the following section.

Example. For the set S = [−2,−1] ∪ [1, 2], we have inf S = −2 and supS = 2. The
set S has only one gap: from −1 to 1, of half-width δ(S) = (1 − (−1))/2 = 1. Thus,
an interval [x, x] is the closest to the set S if and only if |x− (−2)| ≤ 1 and |x−2| ≤ 1.
In particular, intervals [−2, 2], [−3, 3], [−1, 1] are all closest to the set S.

Discussion. The above conditions are equivalent to the enclosures

[inf S + δ(S), supS − δ(S)] ⊆ [x, x] ⊆ [inf S − δ(S), supS + δ(S)].

Out of all the intervals that satisfy this condition, the narrowest is the interval

[inf S + δ(S), supS − δ(S)]

and the widest is the interval

[inf S − δ(S), supS + δ(S)].

If we take an arithmetic average of these two intervals, we get exactly the interval hull
[inf S, supS] of the set S – which is, thus, one of the intervals which are the closest to
the original set S.

Alternatively, we can describe this result by saying that we have a twin interval
(an “interval” whose endpoints are intervals), in which:

• the lower endpoint is the interval [inf S − δ(S), inf S + δ(S)], and

• the upper endpoint is the interval [supS − δ(S), supS + δ(S)].

2-D case is different. In the 1-D case, the interval hull [inf S, supS] of the set S is
(one of the) closest intervals to this set.

In the 2-D case, we can formulate a similar problem by considering multi-D in-
tervals (boxes) B = [x, x]×

[
y, y

]
approximating a given set S. Interestingly, in this

case, the interval hull is not always the closest box to the original set S.
As a simple example, we can take the set S consisting of three line segments:
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• a horizontal segment: −1 ≤ x ≤ 1 and y = 0,

• the first vertical segment: x = −1 and −1 ≤ y ≤ 1, and

• the second vertical segment: x = 1 and −1 ≤ y ≤ 1.

For this set, the interval hull is the box B = [−1, 1]× [−1, 1], for which dH(S,B) = 1.

Indeed, S ⊆ B and every point (x, y) ∈ B is ≤ 1-close to the point (x, 0) ∈ S, so
dH(S,B) ≤ 1. In particular, for the point (0, 1) ∈ B, the closest points in S are at
distance 1, so dH(S,B) = 1.

On the other hand, one can easily check that for the box

B′ = [−1, 1]× [−0.5, 0.5],

we have dH(S,B′) = 0.5 < 1 = dH(S,B). Thus, here, the multi-interval enclosure B
is indeed not the closest multi-interval.

3 Proof of the Proposition

1◦. Let us first prove, by contradiction, that for an interval I, we cannot have
dH(S, I) < δ(S).

Indeed, suppose that for some interval I = [x, x], we have dH(S, I) < δ(S).

1.1◦. Let us first prove that in this case, we have x ≤ inf S + δ(S).

By definition of the infimum inf S, for every n, there exists a point sn ∈ S for which
inf S ≤ sn ≤ inf S + 2−n. By the definition of the Hausdorff distance, we have
d(sn, I) ≤ δ(S), so |sn − x| ≤ δ(S) for some x ∈ I. For this x, we thus have x ≤
sn + δ(S). Since x ∈ I = [x, x], we have x ≤ x ≤ sn + δ(S). From sn ≤ inf S+ 2−n, we
now conclude that S ≤ inf S+2−n+δ(S). In the limit n→∞, we get x ≤ inf S+δ(S).

1.2◦. Similarly, by considering the points sn ∈ S which are close to supS, we conclude
that x ≥ supS − δ(S).

1.3◦. Let us now get the desired contradiction.

By definition, δ(S) is the supremum of half-widths of all the gaps of the set S. By
definition of the supremum, this means that for every ε > 0, there exists a gap (a, b)

for which δ
def
=

b− a
2
≥ δ(S)− ε.

In particular, this is true for any positive value ε <
δ(S)− dH(S, I)

2
, for which

dH(S, I) < δ(S)− 2ε.

Let us consider the midpoint m =
a+ b

2
of the corresponding gap. Then, we have

three options:

• m < x,

• m > x, and

• m ∈ I = [x, x].
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Let us consider these three options one by one.

1.3.1◦. Let us first consider the case when m < x.

Here, m = a + δ, where m ≥ inf S, thus, m ≥ inf S + δ ≥ inf S + δ(S) − ε. On the
other hand, from Part 1.1 of this proof, we conclude that x ≤ inf S + δ(S). Thus, we
have

inf S + δ(S)− ε ≤ m < x ≤ inf S + δ(S).

Both values m and x belong to the same interval [inf S + δ(S) − ε, inf S + δ(S)] of
width ε, hence |m− x| ≤ ε.

Since the point m is in the middle of the gap of radius δ, the closest point from
the set S is at least at the distance δ: d(m,S) ≥ δ. Thus, by the triangle inequality,
we have d(x, S) ≥ d(m,S) − d(m,x) ≥ δ − ε. Since δ ≥ δ(S) − ε, this implies that
d(x, S) ≥ δ(S)− 2ε.

We have selected ε for which δ(S) − 2ε > dH(S, I). Thus, we have found an
element x ∈ I = [x, x] for which d(m,S) > dH(S, I). This inequality contradicts to
the definition of dH(S, I), according to which the Hausdorff distance is the largest of
all the values d(x, S) for x ∈ I and values d(s, I) for s ∈ S.

1.3.2◦. A similar contradiction can be obtained when m > x.

1.3.3◦. To complete the proof of Part 1.3, it is now sufficient to consider the case when
m ∈ I = [x, x].

We have already mentioned that d(m,S) ≥ δ > δ(S)− ε. By our choice of ε, we have
δ(S)− ε > dH(S, I), so we get d(m,S) > dH(S, I) for some point m ∈ I. Similarly to
Part 1.3.1, this inequality leads to a contradiction.

1.3.4◦. In all three possible cases, the assumption that dH(S, I) < δ(S) for some
interval I leads to a contradiction. Thus, for every interval I, we have dH(S, I) ≥ δ(S).

2◦. Let us now prove that if | inf S − x| ≤ δ(S) and | supS − x| ≤ δ(S), then for the
interval I = [x, x], we have dH(S, I) = δ(S). To prove this, we need to prove that:

• for every x ∈ I, we have d(x, S) ≤ δ(S), and

• for every s ∈ S, we have d(s, I) ≤ δ(S).

Let us prove these two statements one by one.

2.1◦. Let us first prove that if x ∈ I, then dH(x, S) ≤ δ(S).

To prove this, we will consider three possible cases:

• x < inf S,

• x > supS, and

• inf S ≤ x ≤ supS.

In the third case, we will consider two subcases:

• when x belongs to the closure S of the set S and

• when x 6∈ S.
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So, we need to consider four cases. Let us consider these four cases one by one.

2.1.1◦. Let us first consider the case when x < inf S.

Since x ∈ I, we have x ≤ x < inf S. By our assumption, inf S − δ(S) ≤ x, hence
inf S− δ(S) ≤ x < inf S. Thus, |x− inf S| ≤ δ(S), hence d(x, S) ≤ d(x, inf S) ≤ δ(S).

2.1.2◦. Similarly, we can prove that if x > supS, then d(x, S) ≤ δ(S).

2.1.3◦. If inf S ≤ x ≤ supS and x ∈ S, then clearly d(x, S) = 0 and thus, d(x, S) ≤
δ(S).

2.1.4◦. Finally, let us consider the case when inf S ≤ x ≤ supS and x 6∈ S.

In this case, x belongs to the complement to the closure of S. This complement is an
open set, so from the fact that x belongs to this complement, we can conclude that x
belongs to some gap of the set S.

By definition of δ(S), the width of this gap is ≤ 2δ(S). Thus, either to the left
of x, or to the right of x, there must be a point s ∈ S for which d(x, s) ≤ δ(S) –
otherwise, if both distances are larger, we would have a gap of width > 2δ(S). From
the fact that d(x, s) ≤ δ(S) for some s ∈ S, it follows that d(x, S) ≤ δ(S).

2.1.5◦. In all four cases, we concluded that if x ∈ I, then d(x, S) ≤ δ(S).

2.2◦. Let us now prove that if s ∈ S, then d(s, I) ≤ δ(S).

In this case, we can also consider three possible cases:

• case when s < x,

• case when s > x, and

• case when x ≤ s ≤ x.

Let us consider these three cases one by one.

2.2.1◦. Let us first consider the case when s < x.

From s ∈ S, we conclude that inf S ≤ s. By our assumption, we have x ≤ inf S+δ(S).
Thus, inf S ≤ s < x ≤ inf S + δ(S).

So, both values s and x belong to the same interval [inf S, inf S + δ(S)], thus the
difference between these two values cannot exceed the width δ(S) of this interval:
d(s, x) ≤ δ(S). Since x ∈ I, we therefore have d(s, I) ≤ d(s, x) ≤ δ(S) and so, indeed,
d(s, I) ≤ δ(S).

2.2.2◦. Similarly, we can prove that if s > x, then d(s, I) ≤ δ(S).

2.2.3◦. Finally, if x ≤ s ≤ x, this means that s ∈ I = [x, x] thus d(s, I) = 0 and
therefore, d(s, I) ≤ δ(S).

3◦. To complete the proof, we need to prove that if for some interval I = [x, x], we
have dH(S, I) = δ(S), then | inf S − x| ≤ δ(S) and | supS − x| ≤ δ(S).

Without losing generality, let us prove that | inf S−x| ≤ δ(S). (The inequality | supS−
x| ≤ δ(S) is proved similarly.) To prove this double inequality, we must prove:

• that x ≥ inf S − δ(S) and

• that inf S ≥ x− δ(S).
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Let us prove these two statements one by one.

3.1◦. Let us first prove that x ≥ inf S − δ(S).

Indeed, if dH(S, I) ≤ δ(S), this means, in particular, that d(x, S) ≤ δ(S). By the
definition of the distance between an element and the set, this means that for every
n, there exists a value sn ∈ S for which |x− sn| ≤ δ(S) + 2−n and therefore, for which
x ≥ sn − δ(S) − 2−n. Since sn ≥ inf S, this implies that x ≥ inf S − δ(S) − 2−n. In
the limit n→∞, we get x ≥ inf S. The inequality is proven.

3.2◦. Let us now prove that inf S ≥ x− δ(S).

By definition of the infimum, for every n, there exists a value sn ∈ S for which
inf S ≤ sn ≤ inf S + 2−n. Since dH(S, I) ≤ δ(S), this implies that d(sn, I) ≤ δ(S).
So, d(sn, x) ≤ δ(S) for some x ∈ I = [x, x]. Thus, for this x, we have sn ≥ x − δ(S).
Since x ≥ x this implies that sn ≥ x− δ(S). Here, inf S ≥ sn − 2−n, therefore inf S ≥
S − δ(S)− 2−n. In the limit n→∞, we get the desired inequality inf S ≥ x− δ(S).

The proposition is proven.
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