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Abstract

When the coefficients of a linear system are known with interval un-
certainty, instead of a single solution, we have the whole set of possible
solutions – known as the united solution set. It is known that in general,
computing this united solution set is NP-hard. There exist several proofs
of this NP-hardness; all known proofs use examples with intervals of dif-
ferent width – corresponding to different accuracy in measuring different
coefficients. We show that the problem remains NP-hard even if we limit
ourselves to situations when all the coefficients are known with the same
accuracy.
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1 Introduction

Solving a linear system under interval uncertainty: formulation of
the problem. In practice, we are often interested in the values of the quantities
y1, . . . , ym which are difficult (or impossible) to measure directly. In many cases, to
find the values yj , we can use the fact that these values satisfy a system of linear

equations
m∑

j=1

ai,j · yj = bi, 1 ≤ i ≤ p, in which each of the coefficients ai,j and bi is

either known exactly, or can be (directly) measured.

When all the coefficients ai,j and bi are known exactly, and when the matrix ai,j is
regular, then we can solve this linear system and find the exact values of the unknowns
yj . In practice, some of coefficients come from measurements, and measurements are
never absolutely accurate, there is always a measurement error.
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Because of the measurement error, for each measured quantity q, the measurement
result q̃ is, in general, different from the actual (unknown) value q. Usually, we know

the upper bound ∆ on the measurement error ∆q
def
= q̃−q: |∆q| ≤ ∆. In this situation,

the only information that we have about the actual value q is that this value belongs

to the interval q = [q, q]
def
= [q̃ −∆, q̃ + ∆]; see, e.g., [6].

A measurement usually results in a rational value r̃, i.e., the ratio of two integers
n1/n2. Moreover, it is usually a binary number, so it is binary-rational – i.e., of the
type n1/2

n2 . The bound ∆ is also usually rational – binary or decimal. Thus, the
bounds of the resulting interval [q, q] = [q̃ −∆, q̃ + ∆] are rational.

So, based on the measurements, we only know the intervals ai,j and bi of possible
values of the corresponding coefficients. For different values ai,j ∈ ai,j and bi ∈ bi, we
have, in general, different solutions yj .

It is therefore desirable to find, for each j, the interval of possible values yj . Thus,
we arrive at the following problem.

Definition 1. By an interval linear system, we mean a tuple consisting of integers
m and p and intervals ai,j and bi, 1 ≤ i ≤ p, 1 ≤ j ≤ m with rational bounds. A

system will also be denoted by
m∑

j=1

ai,j · yj = bi.

Definition 2. We say that a tuple y = (y1, . . . , ym) is a possible solution to the

interval linear system if for some ai,j ∈ ai,j and bi ∈ bi, we have
m∑

j=1

ai,j · yj = bi for

all i.

Comment. The term “possible solution” comes from [3]. In [1], such solutions are
called weak solutions.

Definition 4. The set of all possible solutions is called a united solution set.

Definition 5. Let ε > 0 be a real number.

• We say that a number ṽ is an ε-approximation to a number v if |ṽ − v| ≤ ε.

• We say that an interval
[
ṽ, ṽ
]
is an ε-approximation to an interval [v, v] if

|ṽ − v| ≤ ε and
∣∣∣ṽ − v∣∣∣ ≤ ε.

• We say that a set
[
ṽ1, ṽ1

]
× . . . ×

[
ṽm, ṽm

]
is an ε-approximation to the set

[v1, v1]× . . .× [vm, vm] if for ever i, the interval
[
ṽi, ṽi

]
is an ε-approximation

to the interval [vi, vi].

Definition 6. By the problem of computing the united solution set, we mean the
following problem: given an interval linear system (with possible solutions) and a ratio-
nal number ε > 0, compute a ε-approximation to the interval hull [y

1
, y1]×. . .×[y

m
, ym]

of the united solution set.
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In other words, for each j, we want to find ε-approximations to the following two
values:

• the minimum y
j

of all the values yj corresponding to all possible tuples

(y1, . . . , yj , . . . , ym), and

• the maximum yj of all the values yj corresponding to all possible tuples
(y1, . . . , yj , . . . , ym).

What is known. It is known that the problem of computing the united solution
set is, in general, NP-hard; see, e.g., [3]. Moreover, it is known that even the problem
of checking whether there are any possible solutions is NP-hard [3].

What if all measurements have the same accuracy? The book [3] lists
several proofs that the problem of computing the united solution set is NP-hard; each
of these proofs uses intervals of different width – corresponding to situations when we
measure different coefficients ai,j and bi with different accuracy.

What if all the measurements have the same accuracy – i.e., all non-degenerate
intervals have the same width?

On the one hand, in some such cases, it is possible to find a feasible algorithm for
computing the united solution set; see, e.g., [2]. On the other hand, it was proven,
in [1], that the problem of checking whether there are any possible solutions is still
NP-hard even if we limit ourselves to measurements with the same accuracy.

What we do. In this paper, we show that for the cases when all the measurements
have the same accuracy and the system has a possible solution (i.e., the united solution
set is non-empty), the problem of computing the united solution set is also NP-hard.

2 Main Result

Definition 7. Let ∆ > 0 be a rational number. We say that an interval linear

system
m∑

j=1

aij · yj = bi is uniformly ∆-accurate if each interval aij or bi is either

identically 0 or has half-width ∆.

Theorem 2.12. [1] For every ∆ > 0, it is NP-hard to check whether a uniformly
∆-accurate interval linear system has a possible solution.

Proposition. For every ∆ > 0, the problem of computing the united solution for
uniformly ∆-accurate interval linear systems is NP-hard.

Comment. In other words, for every ∆ > 0, the following problem is NP-hard:

• given: a positive real number ε > 0 and a uniformly ∆-accurate interval linear
system that has possible solutions;

• compute: an ε-approximation to the interval hull [y
1
, y1]× . . .× [y

m
, ym] of the

united solution set.
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Discission. It is important to mention that in general, the fact that it is NP-hard
to check whether a system of equations has a solution does not necessarily mean that
the problem of computing the solution when it exists is NP-hard.

As a simple example of such a situation, let us consider the following problem:

• given: a linear interval system with unknowns y1, . . . , ym in which one of the
equations has the form y1 = 1;

• compute: the set of all the values y1 corresponding to all possible solutions
(y1, . . . , ym) of this system.

In this case, checking whether this problem has a solution – i.e., whether the desired
set if non-empty – is NP-hard. However, if we are limiting ourselves only to interval
linear systems which are known to have possible solution, then the solution to this
problem is trivial: for such systems, the desired set consists of a single value 1.

3 Proof of the Proposition

1◦. By definition (see, e.g., [3, 5]), a problem P0 is NP-hard if every problem from the
class NP can be reduced to this problem P0. Thus, to prove that a given problem Pg

is NP-hard, it is sufficient to prove that a known NP-hard problem Pk can be reduced
to Pg.

As such a problem Pk, we take the following subset sum problem (see, e.g., [3, 5]):

given positive integers s1, . . . , sn, find the values εi ∈ {−1, 1} for which
n∑

i=1

εi · si = 0.

2◦. To prove the Proposition, we will reduce each instance (s1, . . . , sn) of the subset
sum problem to following interval linear system consisting of the following p = 2n+ 2
equations with m = n+ 1 unknowns y1, . . . , yn, yn+1:

• for i ≤ n, the corresponding equation takes the form

[∆, 3∆] · yi + [−∆,∆] · yn+1 = 0; (1)

• for n+ 1 ≤ i ≤ 2n, the corresponding equation takes the form

[−∆,∆] · yi−n + [−3∆,−∆] · yn+1 = 0; (2)

• the equations corresponding to i = 2n+ 1 and i = 2n+ 2 have the form

[1, 1 + 2∆] · yn+1 = [−∆,∆]; (3)

n∑
j=1

[M · sj −∆,M · sj + ∆] · yj = 0, (4)

where we denoted M
def
= 3∆ · n.

One can easily check that this system is ∆-accurate.
Let us prove the following two implications:

• if the original instance of the subset sum has a solution, then the interval y1

(corresponding to the interval hull of the united solution set) is equal to [−∆,∆];

• on the other hand, if the original instance of the subset problem does not have
a solution, then y1 = [0, 0].
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If we compute the lower endpoint y
1

of the interval y1 with accuracy ε < ∆/2, we will
get a rational number ỹ

1
for which |y

1
− ỹ

1
| ≤ ε < ∆/2. Hence:

• if the original instance of the subset sum has a solution, then y
1

= −∆ and
thus, ỹ

1
< −∆/2;

• on the other hand, if the original instance of the subset problem does not have
a solution, then y

1
= 0 and thus, ỹ

1
> −∆/2.

Thus, if we could approximate y
1

with accuracy ε, then, by comparing the resulting
rational number ỹ

1
with another rational number −∆/2, we would be able to tell

whether a given instance of the subset problem has a solution. Therefore, we will have
the desired reduction of the subset sum problem to our problem.

3◦. To prove the above implications, let us first analyze the system (1)–(4).

For each j ≤ n, the fact that the tuple (y1, . . . , yn+1) is a possible solution means,
in particular, that the equation (1) is satisfied for i = j, i.e., that we have

aj,j · yj + aj,n+1 · yn+1 = 0

for some coefficients aj,j ∈ [∆, 3∆] and aj,n+1 ∈ [−∆,∆]. Thus, yj = rj · yn+1, where

the coefficient rj
def
= aj,n+1/aj,j takes a value from the interval [−∆,∆]/[∆, 3∆] =

[−1, 1]. So, |rj | ≤ 1.
Similarly, the equation (2) corresponding to i = n+ j means that

an+j,j · yj + an+j,n+1 · yn+1 = 0

for some coefficients an+j,j ∈ [−∆,∆] and an+j,n+1 ∈ [∆, 3∆]. Here, |an+j,j | ≤ ∆
and |an+j,n+1| ≥ ∆. Substituting yj = rj · yn+1, with |rj | ≤ 1, into this equation, we
conclude that

(an+j,j · rj) · yn+1 = (−an+j,n+1) · yn+1. (5)

3.1◦. We either have yn+1 = 0 or yn+1 6= 0.
If yn+1 = 0, then from yj = rj ·yn+1, we conclude that yj = 0 for all j ≤ n. In this

case, we have a tuple consisting of all zeros. One can check that this tuple is indeed a
possible solution of the system (1)–(4).

3.2◦. If yn+1 6= 0, then, dividing both sides of the equation (5) by yn+1, we conclude
that

an+j,j · rj = −an+j,n+1. (6)

Since −an+j,n+1 ≥ ∆, we cannot have an+j,j = 0. If we had |rj | < 1, then we would
have |an+j,j · rj | < |an+j,j | ≤ ∆, which contradicts to the fact that for −an+j,n+1 =
an+j,j · rj , we have | − an+j,n+1| ≥ ∆. Since |rj | ≤ 1 and it is not possible to have
|rj | < 1, we conclude that |rj | = 1, i.e., that yj = rj · yn+1 for some rj ∈ {−1, 1}.
Thus, all possible solutions (y1, . . . , yn+1) with yn+1 6= 0 have the form yj = ±yn+1

for all j ≤ n.

4◦. From the equation (3), it follows that |yn+1| ≤ ∆. Since y1 = r1 ·yn+1 for r1 = ±1,
we conclude that |y1| ≤ ∆ for all possible solutions (y1, . . . , yn+1).

5◦. The equation (4) means that for some values αj for which |αj | ≤ ∆, we have

n∑
j=1

(M · sj + αj) · yj = 0,
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i.e.,

M ·
n∑

j=1

sj · yi = −
n∑

j=1

αj · yj . (7)

Substituting yj = rj · yn+1 into the formula (7) and dividing both sides by yn+1 6= 0,
we conclude that

M ·
n∑

j=1

rj · sj = −
n∑

j=1

αj · rj . (8)

Since |αj | ≤ ∆ and rj = ±1, we have∣∣∣∣∣
n∑

j=1

αj · rj

∣∣∣∣∣ ≤
n∑

j=1

|αj | ≤ n ·∆.

Thus, from (8), we get

M ·

∣∣∣∣∣
n∑

j=1

rj · sj

∣∣∣∣∣ ≤ n ·∆. (9)

Dividing both sides of this inequality by M = 3∆ · n, we conclude that∣∣∣∣∣
n∑

j=1

rj · sj

∣∣∣∣∣ ≤ 1

3
. (10)

The values sj are integers, the values rj = ±1 are also integers, so the sum
n∑

j=1

rj · sj

is also an integer. The fact that the absolute value of this integer does not exceed 1/3

means that this integer is equal to 0, i.e., that
n∑

j=1

rj · sj = 0.

Thus, if the system (1)–(4) has a non-zero possible solution, then the original
instance of the subset problem has a solution.

6◦. From the previous phrase, we can conclude that if the original instance of the subset
problem has no solutions, then the system (1)–(4) cannot have non-zero solutions.
This, in this case, the only possible solution to the system (1)–(4) is an all-zeros
solution.

In this case, the interval y1 is equal to [0, 0].

7◦. If the original instance of the subset sum problem has a solution εi ∈ {−1, 1} for

which
n∑

i=1

εi · si = 0, then, for each value y1 ∈ [−∆,∆], we can take yi =
εi
ε1
· y1 for

all i ≤ n and yn+1 =
y1
ε1
. Let us show that these values form a possible solution of the

system (1)–(4); indeed:

• Each equation of the type (1) is satisfied since for the selected values yj , we have

∆ · yi + (−∆ · εi) · yn+1 = 0,

with ∆ ∈ [∆, 3∆] and −∆ · εi ∈ [−∆,∆].

• Each equation of type (2) is satisfied since for i = n+ j, we have

(∆ · εi) · yi + (−∆) · yn+1 = 0,

with ∆ · εi ∈ [−∆,∆] and −∆ ∈ [−3∆,−∆].
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• The equation (3) is satisfied since

1 · yn+1 = yn+1,

where 1 ∈ [1, 1 + 2∆] and yn+1 ∈ [−∆,∆].

• Finally, the equation (4) is satisfied since we have

n∑
j=1

(M · sj) · yj = 0,

with M · si ∈ [M · si −∆,M · si + ∆].

On the other hand, we know that for all possible solutions, we have |y1| ≤ ∆. Thus,
in this case, the desired interval y1 is equal to [−∆,∆].

The reduction is proven, and so is the Proposition.

Comment. In the above reductions, the number of equations is, in general larger
than the number of unknowns; however, we can easily make these two numbers equal
if we add extra unknowns that do not affect equations at all. Thus, the problem
remains NP-hard even if we limit ourselves to square systems.
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