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Abstract

One of the main problem of interval computations is computing the
range of a given function over given intervals. It is known that naive
interval computations always provide an enclosure for the desired range.
Sometimes – e.g., for single use expressions – naive interval computations
compute the exact range. Sometimes, we do not get the exact range
when we apply naive interval computations to the original expression,
but we get the exact range if we apply naive interval computations to
an equivalent reformulation of the original expression. For some other
functions – including some polynomials – we do not get the exact range
no matter how we reformulate the original expression. In this paper,
we are looking for the simplest of such polynomials – simplest in several
reasonable senses: that it depends on the smallest possible number of
variables, that it has the smallest possible number of monomials, that it
has the smallest degree, etc. We then prove that among all polynomials
for which naive interval computations cannot be exact, there exists a
polynomial which is the simplest in all these senses.
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1 Formulation of the Problem

Interval computations and naive (straightforward) interval computations:
a brief reminder. In many practical situations, we know an algorithm y =
f(x1, . . . , xn) that relates the desired quantity y with several other quantities
x1, . . . , xn, and for each xi, we know the interval [xi, xi] that is guaranteed to contain
the actual (unknown) value of this quantity. In this case, the only thing that we can
conclude about the value of y is that this value belongs to the range

[y, y] = {f(x1, . . . , xn) : x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]}.

The problem of computing this range based on the known values xi and xi is known
as the problem of interval computations; see, e.g., [2, 4].

For arithmetic operations such as f(x1, x2) = x1±x2, the range is easy to compute:

• for the sum, the range is [y, y] = [x1 + x2, x1 + x2];

• for the difference, the range is [y, y] = [x1 − x2, x1 − x2];

• for the product, the range is [y, y] =

[min(x1 · x2, x1 · x2, x1 · x2, x1 · x2),max(x1 · x2, x1 · x2, x1 · x2, x1 · x2)];

• the ratio can be obtained as x1/x2 = x1 · (1/x2), and for y(x1) = 1/x1, the
range is also easy to compute: [y, y] = [1/x1, 1/x1] (of course, this is only true
if 0 6∈ [x1, x1]).

To these operations, we can also easily add min and max:

• for f(x1, x2) = min(x1, x2), the range if [y, y] = [min(x1, x2),min(x1, x2)];

• for f(x1, x2) = max(x1, x2), the range if [y, y] = [max(x1, x2),max(x1, x2)].

These formulas of interval arithmetic can be used to find the following enclosure
[Y , Y ] ⊇ [y, y] for the range [y, y] corresponding to any algorithm f(x1, . . . , xn):

• first, we parse the algorithm f(x1, . . . , xn), i.e., represent it as a sequence (i.e.,
composition) of elementary arithmetic operations;

• then, we replace each operation in this sequence by the corresponding operation
of interval arithmetic.

This way of computing the enclosure is known as naive or straightforward interval
computation.

As an example, let us consider the problem of finding the range of the function
f(x1) = x1 · (1 − x1) on the interval [x1, x1] = [0, 1]. To compute this expression, we
first compute the intermediate result r = 1− x1, and then compute y as x1 · r.

• For the first operation, interval arithmetic leads to

[r, r] = 1− [0, 1] = [1, 1]− [0, 1] = [1− 1, 1− 0] = [0, 1].

• For the second operation, we then get an enclosure [0, 1] · [0, 1] = [0, 1] that
contains in the actual range [0, 0.25].

This example is typical: by using naive interval computations, we usually get
an enclosure with a large “excess width” – i.e., with a large difference between the
enclosure and the actual range. As a result, naive interval computations are not
used to solve serious interval computation problems: much more efficient interval
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computations algorithms are known [2, 4]. However, it is still useful to study naive
interval computations, since most of the modern interval computations algorithms, no
matter how many sophisticated ideas they utilize, still use naive interval computations
at some stage.

Sometimes, we can get the exact range by applying naive interval compu-
tations either to the original expression or to its equivalent reformulation.
Sometimes, naive interval computations lead to the exact range: e.g., when we have an
single-use expression, i.e., an algebraic expression in which each variable occurs only
once, such as x1 · (x2 + 2).

In other cases, we can get the exact results if we first transform the original ex-
pression into an equivalent form, and then apply naive interval computations to this

equivalent form. For example, for the expression
x1

x1 + x2
, naive interval computations

lead to excess width, but if we transform it into an equivalent single-use expression

form
1

1 + x2/x1
, then we get the exact range.

Similarly, any quadratic expression of one variable a·x2
1+b·x1+c can be represented

as an equivalent single-use expression a · (x1−p)2 + q, where p = − b

2a
and q = c− b2

4a
.

Thus, if we add the computation of the range of x2
1 to the list of interval arithmetic

operations, then for the equivalent expression, naive interval computations lead to the
exact range.

Sometimes, naive interval computations do not lead to the exact range
no matter how we reformulate the function. In some other cases, however, no
matter what equivalent reformulation of the original expression we take, we never get
the exact range.

For the case when we are only allow the usual interval arithmetic operations (no
x2
1 operation), the existence of such functions was proven in [1]: namely, the square

x2
1 itself is one of such functions.

In general, even if we allow x2
1 (and, more generally, any smooth unary or binary

operation), there always exists a function of three variables for which naive interval
computations – even computations using exact results of additional binary operations
– will never lead to the exact range; see, e.g., [5].

Natural question: which is the simplest such function? If we do not allow x2
1

in our list of interval arithmetic operations, then already f(x1) = x2
1 is the simplest

function for which naive naive interval computations cannot lead to the exact range.
But what if we add computing the range of x2

1 – and of xn
1 for any natural number

n – to the list of allowed operations of interval arithmetic? This is easy to do since
for odd n, the range of xn

1 is simply [y, y] = [xn
1 , x

n
1 ], while for even n, we also have a

simple formula for the range [y, y]:

• [y, y] = [x2
1, (x1)2] when 0 ≤ x1;

• [y, y] = [(x1)2, x2
1] when x1 ≤ 0, and

• [y, y] = [0,max(x2
1, (x1)2)] when x1 < 0 < x1.

We can add explicit ranges for other operations.
What will then be the simplest function f(x1, . . . , xn) for which naive interval

computations do not always lead to an exact range?

What we do in this paper. In this paper, we formalize this question and then
answer this question by providing an example of such simplest function.
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2 Towards a Formal Description of the Problem

What we need to formalize. To describe the above question in precise terms, we
need to formally describe two things:

• that for a function, naive interval computations cannot be exact, and

• that one function is simpler than another function.

What does it mean that for a function, naive interval computations cannot
be exact? The results of all operations of interval arithmetic – including min, max,
and raising to the n-th power – are either rational or piecewise-rational functions of
the inputs xi and xi. Thus, when we use naive interval computations to compute the
range of a function, the resulting dependence of y and y is a composition of piecewise
rational functions.

In principle, we can add other operations, but it make sense to assume that for all
the operations we add, the dependence of the resulting range on the inputs is piecewise
rational. By a possibility of naive interval computation we mean the following:

• First, we select basic functions. In the usual interval computations, the basic
functions are arithmetic operations, minimum, and maximum (and possibly in-
teger powers), but we can have additional basic functions. Our only restriction
on the selection of basic functions is that for each such function b(a1, . . . , am),
the dependence of the endpoints of its range b([a1, a1], . . . , [am, am]) on the end-
points ai and ai of input intervals is described by a piecewise rational function.

• Then, we find a representation of the original function f(x1, . . . , xn) – in whose
range we are interested – as a composition of selected basic functions. This is
similar to how in traditional interval computations, we represent a given function
as a sequence of – i.e., in mathematical terms, a composition of – elementary
arithmetic operations.

• To estimate the range of the original function f(x1, . . . , xn) on given intervals
[xi, xi], we replace each basic function b(a1, . . . , an) from this composition by
the corresponding interval-valued function b([a1, a1], . . . , [am, am]).

Similarly to the case of usual interval computations, one can prove that the resulting
interval F encloses the desired range f([x1, x1], . . . , [xn, xn]). The question is: for
a given function f(x1, . . . , xn), can we find such a representation that the resulting
interval F always coincides with the actual range – with no excess width?

One can show that in our generic definition, such a representation is possible
for a given function f(x1, . . . , xn) if and only the dependence of the desired range
f([x1, x1], . . . , [xn, xn]) on the endpoints xi and xi of input intervals is described by a
piecewise rational function. Indeed:

• If the desired representation is possible, then the dependence on the endpoints of
the desired range in the endpoints of the inputs is a composition of such depen-
dencies for the basic functions. All these dependencies are piecewise rational.
It is known that the composition of piecewise rational functions is piecewise
rational. Thus, the dependence on the endpoints of the desired range in the
endpoints of the inputs is piecewise rational.

• Vice versa, if the dependence on the endpoints of the desired range
f([x1, x1], . . . , [xn, xn]) on the endpoints xi and xi of the inputs is piecewise
rational, then we can simply use the given function f(x1, . . . , xn) as one of the
basic functions, and thus get the exact range.
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From this viewpoint, the question of whether the range f([x1, x1], . . . , [xn, xn]) of a
given polynomial f(x1, . . . , xn) can be computed by (thus generalized) naive interval
computations is equivalent to the question of whether the dependence of this range on
the endpoints xi and xi of the input intervals is piecewise rational.

When is one function simpler than another function? In this paper, we limit
ourselves to polynomials – functions that can be represented as compositions of ad-
dition, subtraction, and multiplication. There can be several comparisons between
polynomials:

• if one polynomial depends on fewer variable than another one, then it is simpler;

• if one polynomial consists of fewer monomials that the other one, then this
polynomial is simpler;

• if one polynomial has smaller overall degree, then it is simpler; and, finally,

• if two polynomials have the same degree, but one of them has fewer monomial
of the maximum degree, then this polynomial is simpler.

Of course, these criteria are different: e.g., according to the first criterion, the pol-
ynomial x3

1 is simpler than x1 + x2, but according to the third criterion, the linear
polynomial x1 + x2 is simpler. What we will prove is that there exists a polynomial
which is the simplest in all these senses.

Now, we are ready to formally describe our problem.

3 Definitions and the Main Result

Definition 1. We say that a function f(x1, . . . , xn) is piecewise rational if there exist
rational functions R1(x1, . . . , xn), . . . , Rm(x1, . . . , xn), so that for every combination
x = (x1, . . . , xn), the value f(x1, . . . , xn) is equal to one of the values Rj(x1, . . . , xn).

Comment. One can easily show that the composition of finitely many piecewise ratio-
nal functions is also piecewise rational.

Notation. For every function f(x1, . . . , xn), we denote

y(x1, x1, . . . , xn, xn)
def
= min{f(x1, . . . , xn) : x1 ≤ x1 ≤ x1, . . . , xn ≤ xn ≤ xn};

y(x1, x1, . . . , xn, xn)
def
= max{f(x1, . . . , xn) : x1 ≤ x1 ≤ x1, . . . , xn ≤ xn ≤ xn}.

Definition 2. We say that for a function f(x1, . . . , xn), naive interval com-
putation cannot be exact if for this function, at least one of the dependencies
y(x1, x1, . . . , xn, xn) and y(x1, x1, . . . , xn, xn) is not piecewise rational.

Comment. In this case, the range dependence cannot be described as a composition of
piecewise rational functions. Since each step of naive interval computation computes a
piecewise rational function, this means that naive interval computations cannot exactly
compute this function’s range – no matter how we reformulate the original expression.

Notation. Let us denote the class of all the polynomials for which naive interval
computations cannot be exact by P.

Proposition. There exists a polynomial f ∈ P for which:
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• the number of variables is the smallest possible among all polynomials from P;
• the number of monomials is the smallest possible among all polynomials from P;
• the overall degree is the smallest possible among all polynomials from P; and
• the number of monomials of the highest degree is the smallest possible among all

polynomials from P.

Comments.

• As the desired polynomial, we will take f(x1, x2) = x3
1−x1 ·x2. The Proposition

says that this polynomial is the simplest – in many reasonable senses – among
all polynomials for which naive interval computations cannot be exact.

• The above example is not the only simplest polynomial: e.g., one can see that
a polynomial f(x1, x2) = x3

1 + x1 · x2 also has the same property (in the proof,
we just need to replace x2 ∈ [1, 3] with x2 ∈ [−3,−1]).

• The fact that the range of this polynomial cannot be computed by using naive
interval computations does not mean that this range is difficult to compute:
we can easily compute its range by using calculus ideas – similar to what we
describe in the proof for computing the range of a quadratic polynomial.

• For practical purposes, it is desirable to know when an application of the naive
interval computations idea to an equivalent form a given function can lead to the
exact range – and if yes, what equivalent form we should use for this purpose.
This is an important and practically useful question – and this question is still
open. We hope that our present – purely theoretical – result will bring us one
step closer to the answer (at least a partial answer) to this important practical
question.

4 Proof

1◦. Let us first prove that for our polynomial f(x1, x2) = x3
1− x1 · x2, the dependence

of the range on the endpoints is not piecewise rational.

Indeed, let us fix x1 = 0 and x1 = 1 and consider only the cases when the x2-
interval is degenerate, i.e., when x2 = x2 = x2 for some x2. Let us consider the
dependence of the lower endpoint y(x1, x1, x2, x2) = y(0, 1, x2, x2) of the resulting
range on x2 for values x2 from the interval [1, 3].

The value y(0, 1, x2, x2) is, by definition, the smallest value of the polynomial

P (x1) = x3
1−x1 ·x2 on the interval x1 ∈ [0, 1]. This minimum is attained either at one

of the endpoint x1 = 0 and x1 = 1, or at a point where the derivative is equal to 0,

i.e., where 3x2
1 − x2 = 0. This equation has two solutions x±1 = ±

√
x2√
3

. The negative

solution x−1 is outside the interval [0, 1], but the positive solution x+
1 is, for x2 ≤ 3,

inside this interval.
Thus, y(0, 1, x2, x2) is the smallest of the three values: P (0) = 0, P (1) = 1 − x2,

and

P (x+
1 ) = P

(√
x2√
3

)
=

x2 ·
√
x2

3 ·
√

3
−
√
x2√
3
· x2 = −2

3
·
x2 ·
√
x2√

3
.

This smallest value is clearly smaller than 0, so the corresponding extremum point x+
1

is a minimum. Thus, after this point x+
1 , the function P (x1) increases, hence the value

P (1) is larger than P (x+
1 ).
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Therefore, the value P (x1) attains its minimum on the interval [0, 1] at the point
x+
1 , and the value of the corresponding minimum is

y(0, 1, x2, x2) = −2

3
·
x2 ·
√
x2√

3
.

This is clearly not a piecewise rational function. The statement is proven.

2◦. To complete the proof, we now need to prove that the above polynomial is indeed
the simplest among polynomials from the class P. To prove this, let us consider the
simplicity properties from the Proposition one by one.

2.1◦. Let us first prove that every polynomial f ∈ P depends on at least two vari-
ables xi.

Indeed, a polynomial of one variable f(x1) is piecewise monotonic. Thus, for each
x1 and x1, the endpoints of the corresponding range are either the polynomial values
f(x1) and f(x1), or the constant values at the corresponding minimum or maximum
points. Thus, for functions of one variable, the range is always a piecewise polynomial
– hence piecewise rational – function of the endpoints x1 and x1.

Therefore, to find a polynomial for which the range is not piecewise rational, we
need to consider polynomials which depend on at least two different variables x1 and
x2 (and maybe more).

Thus, our polynomial indeed has the smallest possible number of variables among
all polynomials from the class P.

2.2◦. Let us now prove that every polynomial f ∈ P has at least two monomials.

Indeed, every polynomial can be represented as a sum of monomials, i.e., products
of the type a · xk1

1 · . . . · xkn
n . We included raising to the power to the list of elemen-

tary arithmetic operations for which we allow the corresponding interval arithmetic
operations in our naive-interval computations.

Thus, in our setting, each monomial is a single-use expression for which naive inter-
val computations compute the exact range. Therefore, to find a polynomial for which
naive computations do not compute the exact range, we need to consider polynomials
that have at least two monomials.

Thus, our polynomial indeed has the smallest possible number of monomials among
all polynomials from the class P.

2.3◦. Let us now prove that every polynomial f ∈ P must be of degree at least 3.

Indeed, let us prove that for a quadratic polynomial f(x1, . . . , xn), the dependence
of y and y on the endpoints xi and xi is piecewise rational.

Let us denote the point at which the polynomial f(x1, . . . , xn) attains its maximum
value y on the given box

[x1, x1]× . . .× [xn, xn]

by xmax = (xmax
1 , . . . , xmax

n ). According to calculus, when the function attains its
maximum on the box then for each i:

• either the maximum is attained at one of the borderline values xmax
i = xi or

xmax
i = xi,

• or the maximum is attained for some value xmax
i inside the open interval (xi, xi),

in which case the partial derivative
∂f

∂xi |xi=xmax
i

should be equal to 0.
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The derivative of a quadratic function f(x1, . . . , xn) is a linear function. Thus, in all

three cases, the corresponding condition xmax
i = xi, x

max
i = xi, or

∂f

∂xi |xi=xmax
i

= 0 is

a linear relation between the unknowns xmax
1 , . . . , xmax

n .

We have three possible equations for each of n variables xi. We must have one
of these three equations for each i. Thus, overall, we have 3n – a finite number – of
possible combinations of these equations, i.e., 3n possible systems of linear equations
that the actual maximum must satisfy.

Due to Cramer’s rule, the solution to a system of linear equations is a rational func-
tion of all the coefficients. Thus, the values xmax

i piecewise-rationally depend on xi and
xi. Substituting these piecewise-rational values xmax

i into the polynomial expression
f(x1, . . . , xn), we conclude that for quadratic functions, the resulting maximum

y(x1, x1, . . . , xn, xn) = f(xmax
1 , . . . , xmax

n )

is a piecewise rational functions of the inputs xi and xi.

Similarly, we can prove that for quadratic functions f(x1, . . . , xn), the lower end-
point y of the corresponding range is also a piecewise rational function of the inputs
xi and xi.

Thus, to get a polynomial for which the dependence of the range on the inputs
xi and xi is not piecewise rational, we need to make sure that at least one of the
monomials in this polynomial has an overall degree at least 3.

Hence, our polynomial indeed has the smallest possible overall degree number
among all polynomials from the class P.

Comment. It should be mentioned that while for quadratic functions, the range can
be computed exactly by an appropriate version of naive interval computations, the
fact that for this, we need a function that consists of exponentially many (3n) rational
pieces makes this possibility purely theoretical – at least for large n. This fact is in
good accordance with the fact that, in general, the problem of computing the exact
range of a quadratic function over given intervals is NP-hard (see, e.g., [3]) – and thus,
unless P=NP (which most computer scientists believe to be impossible), no feasible
algorithm is possible that would always compute this range.

2.4◦. Finally, one can easily see that our polynomial has the smallest possible number
of monomials of the highest degree – namely, one – among all polynomials from the
class P.

Thus, among all polynomials from the class P, our polynomial is indeed the sim-
plest possible. The proposition is proven.
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