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Abstract

In many practical situations, measurements are characterized by in-
terval uncertainty – namely, based on each measurement result, the only
information that we have about the actual value of the measured quantity
is that this value belongs to some interval. If several such intervals – cor-
responding to measuring the same quantity – have an empty intersection,
this means that at least one of the corresponding measurement results is
an outlier, caused by a malfunction of the measuring instrument. From
the purely mathematical viewpoint, if the intersection is non-empty, there
is no reason to be suspicious. However, from the practical viewpoint, if
the intersection is too narrow – i.e., almost empty – then we should also
be suspicious, and mark this as an possible additional outlier case. In this
paper, we describe a natural way to formalize this idea, and an algorithm
for detecting such additional possible outliers.
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1 Formulation of the Problem

Need for several measurements of the same quantity. Most of the information
about the putside world comes from measurements. Measurement are never 100%
accurate: the measurement result x̃ is, in general, different from the actual (unknown)

value of the measured quantity. In other words, the measurement error ∆x
def
= x̃ − x

is, in general, different from 0. Measurements are also not 100% reliable: sometimes
measuring instruments malfunction.

A natural way to increase the accuracy and reliability of our information is to
perform several measurements of the same quantity.

Which measurement results are outliers: an important problem. The fact
that measurement are not 100% reliable means that sometimes measuring instruments
malfunction – e.g., get stuck in the previously measured value. If we view such a
measurement result as reflecting the true value of the measured quantity, we will get
a false impression – and we may make bad decision based on this impression. For
example, if the temperature in the chemical reactor starts rising above the optimal
level, we need to cool it down to avoid it getting into an ineffective regime or even
blowing up. However, if the temperature sensor is stuck in the previously measured
(normal) value, we will not notice this potential dangerous development. Similarly, if
a distance-measuring sensor in a self-driving vehicle gets stuck in the previous value
of the distance from the vehicle to a nearby wall, this malfunction may lead to the
vehicle hitting this wall.

In all such cases, it is desirable to decide whether all the measurement results are
correct or whether some of them are suspicious – possibly outliers.

Comment. This problem is important not only for direct measurements, when the
measurement values come directly from the corresponding sensors, but also for indirect
measurements, when the estimate x̃ for the quantity of interest x comes from applying
an appropriate algorithm to one or several results of direct measurement.

Need to consider interval uncertainty. Detecting outliers is one of the main prob-
lem in measurements; see, e.g., [5, 6]. In metrology, this problem is usually analyzed in
the probabilistic case – when we know the probability distribution of the measurement
errors [5, 6]. However, in many practical situations, the only information that we have
about the measurement error ∆x is an upper bound ∆ on its absolute value |∆x|:
|∆x| ≤ ∆. This upper bound is usually called the accuracy of this measurement.

In this case, once we know the measurement result x̃, the only think we can
conclude about the actual value x is that this value belongs to the interval

[x̃−∆, x̃ + ∆].

How can we detect outliers under such interval uncertainty?

Detecting definite outliers under interval uncertainty. After n measurements,
we get n intervals describing the same quantity. If all measurements are correct – i.e.,
if none of them was an outlier – then the actual value x belongs to all these intervals
and thus, belongs to their intersection. So, in this case, the intersection is non-empty.
Thus, if the intersection of n intervals obtained from n measurements is empty, this
means that at least one of the measurements is an outlier; see, e.g., [3, 7, 8].

Remaining problem: detecting possible additional outliers. At first glance,
it may seem that if the intersection of all the intervals is non-empty, then we have
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no reason to conclude that one of the measurement results was an outlier. However,
simple examples show that even when the intersection is non-empty, we may have a
good reason to suspect that one of the measurements was an outlier.

Indeed, let us assume that we have performed two measurements with accuracy
∆ = 1, resulting in values x̃ = 0 and x̃ = 2, i.e., in intervals [0− 1, 0 + 1] = [−1, 1] and
[2−2, 2+1] = [1, 3]. The intersection of these two intervals is non-empty: it consists of
a single point [−1, 1] ∩ [1, 3] = {1}. However, intuitively, something is not right here:
we started with two not very accurate measurements, with accuracy ±1 comparable
with the actual values, and we magically got a very accurate result? It is much more
probable that one of these measurements is an outlier.

Similarly, if we got measurement results 0 and 1.9, with intervals [−1, 1] and
[0.9, 2.9], the intersection of these two intervals is non-empty – it is equal to the
interval [0.9, 1]. However, intuitively, this situation is suspicious: we started with
measurements of low accuracy, and suddenly magically we got a 10 times more accu-
rate estimate?

It is desirable to flag such suspicious cases, when the intersection is non-empty
but still, we have good reasons to believe that one of the measurement results was an
outlier.

What we do in this paper. In this paper, we provide a possible method for formally
describing such suspicions and thus, to detecting such suspicious cases.

2 How to Formulate and Solve This Problem

Problem: reminder. We have several results x̃1, . . . , x̃n of measuring the same
quantity x. We also know the accuracies ∆1, . . . ,∆n of these measurements. If the
intersection of the corresponding intervals [x̃i−∆i, x̃i + ∆i] is empty, then clearly one
of the measurement result was an outlier. In this paper, we consider situations when
all the intervals have a non-empty intersection.

Idea. In general, the width w of the intersection cannot exceed the smallest of the
widths 2∆i of measurement-related intervals: the width w is either equal to this
smallest width, or is smaller than the smallest of the original widths. We want to
mark cases when the width w of the intersection is improbably small, much smaller
than the smallest width of the corresponding intervals.

In general, we can have different intersection widths W with different probabilities.
We want to dismiss the situations when, for the actually observed intersection width
w, the probability p(w) = Prob(W ≤ w) is smaller than a certain threshold p0. This
is a usual idea in applications of probability, where we routinely dismiss hypotheses
whose probability is too small: e.g., smaller than 5%, or smaller than 1%, or smaller
than 0.1% (see, e.g., [6]).

How to formalize this idea. How can we determine the desired probability in the
case of interval uncertainty? The actual value x of the measured quantity can be any
number from the interval [x̃ − ∆, x̃ + ∆]. There is no reason to assume that some
values from this interval are more probable and some are less probable – it is therefore
reasonable to assume that all the values from this interval are equally probable, i.e.,
that the actual value is uniformly distributed on this interval. This argument – known
as Laplace Indeterminacy Principle – is widely used in applications of statistics; see,
e.g., [4, 6].
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It is also reasonable to assume that measurement errors of different measurements
are independent. Indeed, if two of the measurement errors were strongly correlated,
there would have been no advantage of performing the second measurement: this
second measurement would simply repeat the previous result. Thus, we arrive at the
following formal description of this problem.

A formal description of the problem. Let x denote the actual value of the
quantity. Then, if we perform n measurements with accuracies ∆1, . . . , ∆n, the mea-
surement results are equal to x̃i = xi + ∆xi, where each ∆xi is uniformly distributed
on the interval [−∆i,∆i]. The intersection of these intervals has the form[

max
i=1,...,n

(x + ∆xi −∆i), min
i=1,...,n

(x + ∆xi + ∆i)

]
=[

x + max
i=1,...,n

(∆xi −∆i), x + min
i=1,...,n

(∆xi + ∆i)

]
.

The width W of this intersection is thus equal to

W = min
i=1,...,n

(∆xi + ∆i)− max
i=1,...,n

(∆xi −∆i). (1)

One can see that this expression does not depend on x. So, the problem takes the
following form:

• given n values ∆1, . . . ,∆n and the value w and p0,

• check whether Prob(W ≤ w) ≤ p0, where W is described by the expression (1)
and ∆x1, . . . ,∆xn are independent random variables each of which is uniformly
distributed on the corresponding interval [−∆i,∆i].

General case: Monte-Carlo algorithm. Once we know the values ∆i and w, we
can compute the desired probability Prob(W ≤ w) by the following direct simulation.

We select some large number K. Then, for k = 1, . . . ,K:

• first, we use the usual random number generators to simulate, for i = 1, . . . , n,
the values ∆x

(k)
i which are uniformly distributed on the interval [−∆i,∆i];

• then, we compute the width W (k) of the intersection

n⋂
i=1

[
∆x

(k)
i −∆i,∆x

(k)
i + ∆i

]
,

i.e., the value

W (k) = min
i=1,...,n

(
∆x

(k)
i + ∆i

)
− max

i=1,...,n

(
∆x

(k)
i −∆i

)
,

and we check whether W (k) ≤ w.

We then estimate the desired probability Prob(W ≤ w) as the ratio K≤/K, where K≤
is the number of indices k for which we had W (k) ≤ w. If this ratio is smaller than
or equal to the selected threshold p0, then we conclude that one of the measurement
results was a possible additional outlier.

In the case of two measurements, we can use a faster algorithm. In the
simplest case when we have n = 2 measurements, we can have an explicit expression
for the desired probability. Namely, for any value w < min(2∆1, 2∆2), we have

Prob(W ≤ w) =
w2

4∆1 ·∆2
. (2)



104 H. Dbouk et al., Detecting Possible Additional Outliers

Example. In particular, in the above example, when ∆1 = ∆2 = 1 and w = 1−0.9 =
0.1, this probability is equal to 0.0025 – which is indeed very small, less than 1%.

Proof of the formula (2). Since both variables ∆xi are independent and uniformly
distributed on the corresponding intervals [−∆i,∆i], the probability that W ≤ w is
equal to the ratio A≤/A, where:

• A≤ is the area of the set of all the pairs (∆x1,∆2) for which the inequality
W ≤ w is satisfied, and

• A is the area A = (2∆1) · (2∆2) = 4∆1 ·∆2 of the whole box

[−∆1,∆1]× [−∆2,∆2].

For n = 2, the width W of the intersection has the form

W = min(∆x1 + ∆1,∆x2 + ∆2)−max(∆x1 −∆1,∆x2 −∆2).

To find an explicit expression for the width, we need to decide:

• which of the two minimized expressions from the expression for the width is the
smallest, and

• which of the two maximized expressions is the largest.

Here:

• the condition ∆x1 + ∆1 ≤ ∆x2 + ∆2 is equivalent to ∆x1 − ∆x2 ≤ ∆2 − ∆1,
and

• the condition ∆x1 −∆1 ≤ ∆x2 −∆2 is equivalent to ∆x1 −∆x2 ≤ ∆1 −∆2.

Thus, to find all possible cases, it is sufficient to compare the difference ∆x1 − ∆x2

with the values ∆1 −∆2 and ∆2 −∆1.
Without losing generality, we can assume that the second measurement was more

accurate (or of the same accuracy), i.e. that ∆2 ≤ ∆1. In this case,

∆2 −∆1 ≤ 0 ≤ ∆1 −∆2,

so we have ∆2 − ∆1 ≤ ∆1 − ∆2. Thus, there are three possible results of such
comparisons:

1. we can have ∆1 −∆2 ≤ ∆x1 −∆x2;

2. we can have ∆2 −∆1 ≤ ∆x1 −∆x2 ≤ ∆1 −∆2; and

3. we can have ∆x1 −∆x2 ≤ ∆2 −∆1.

In the second case, the width W of the intersection is equal to

(∆x2 + ∆2)− (∆x2 −∆2) = 2∆2.

This width is equal to the smaller of the two widths – i.e., the largest possible value of
the intersection width, so it cannot be smaller than w < min(2∆1, 2∆2) = 2∆2. Thus,
the condition W ≤ w can only be satisfied in the first and third cases.

In the first case, the width is equal to

W = (∆x2 + ∆2)− (∆x1 −∆1) = ∆1 + ∆2 − (∆x1 −∆x2).
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Thus, the condition W ≤ w is equivalent to

∆1 −∆2 − w ≤ ∆x1 −∆x2. (3)

The corresponding part of the box is shaded in the top left part of the following picture:

-
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The set of all the pairs (∆1,∆2) for which this inequality is satisfied forms a right
triangle with both sides equal to w, so its area is w2/2. Similarly, the set corresponding
to the third case – shaded in the bottom right part of the above picture – has area
w2/2. Thus:

• the overall area A≤ is equal to (w2/2) + (w2/2) = w2, and

• the desired probability A≤/A is indeed equal to the ratio w2/(4∆1 ·∆2).

The formula (2) is proven.
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