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Abstract

The past thirty years have seen an explosion in the use of Monte Carlo
methods for statistical inference, with an important advance being the use
of population Monte Carlo (PMC) methods, which use of a population for
exploring the search space. Despite their success in statistics, PMC meth-
ods have received less attention in the field of optimization. This paper
begins by introducing population Markov chain Monte Carlo (MCMC)
[10, 20]; and sequential Monte Carlo (SMC) [6, 12], then describes the
use of interval arithmetic to aid these algorithms. In this paper, through
showing how interval arithmetic may be used within PMC algorithms,
we obtain methods that combine the useful properties of both PMC and
internal arithmetic.
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1 Introduction

This paper is concerned with sampling and global optimization. The former task is to
simulate points from a distribution π on space X ; the latter is the task of finding the
point in a domain X at which some objective function f : X → R obtains its maximum
maxx∈X f(x). These problems are widely encountered in numerous applications in
science and engineering and many different methodologies have been proposed for
solving them. Our focus in this paper is on combining two quite different types of
technique: population Monte Carlo (PMC) and interval methods. The term PMC
encompasses several different ideas, each of which uses a population of points to explore
the distribution or objective function. The use of interval methods also refers to a
variety of algorithms, their common characteristic being that the exploration of the
distribution or objective function is guided by information obtained through the use
of interval arithmetic [22, 23].

PMC has a number of desirable characteristics in common with the widely used
techniques that can be termed evolutionary algorithms. The use of a population of
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points often ensures that PMC can often avoid getting stuck in a local, rather than
the desired global, optimum. However, there remain cases where PMC may not find
the global optimum when only a fixed computational budget is available: in particular
for objective functions where the global optimum is in a peak of the objective function
that has small support and is well separated from other peaks of the function. It will
be seen that this is precisely the type of function that is handled efficiently by interval
methods.

Interval methods are usually motivated by a desire for guaranteed bounds or guar-
anteed computations, but this is not the motivation for their use in this paper. Instead,
we aim to exploit some properties of interval arithmetic that have not previously been
used in Monte Carlo methods. Namely, we aim to exploit the property that it is pos-
sible to find information about the range of a function on an interval solely through
evaluating the interval extension of the function, which has a computational cost of
the same order as evaluating the function itself. There is something of an analogy
here with research that makes use of derivatives of a function to improve the efficiency
of Monte Carlo methods. In this case the derivative function provided by automatic
differentiation, analogous to the interval extension, provides information that is not
directly available in the original function.

This paper illustrates Monte Carlo approaches that can use any method for ap-
proximating the range of a function over an interval. This is done through introducing
the concept of a “dilation” of a function, and showing how a dilation may be used
in Monte Carlo methods. The role of interval methods is to provide a computation-
ally cheap method for approximating the dilation. The interval techniques used in
this paper are the naive approaches described in Moore [23], however we will see that
even these naive methods can yield improvements to the performance of Monte Carlo
methods on some classes of functions.

Readers of this journal may not be familiar with the literature on Monte Carlo
methods. Therefore, the remainder of this section gives the required background on
each of the techniques used in the paper: beginning a description of Monte Carlo meth-
ods and simulated annealing (SA) in section 1.1.3, before describing two PMC methods
in section 1.2. A reader familiar with this background material may wish to start read-
ing from section 2 which describes the main contribution of the paper, showing how
interval arithmetic may be used within PMC algorithms. Section 3 demonstrates the
performance of these new techniques, before we discuss the implications of this work
in section 5.

1.1 Simulation Algorithms And Simulated Annealing

Our starting point is a short description of the core Monte Carlo methods importance
sampling (IS), Markov chain Monte Carlo (MCMC) and SA, since these ideas lie at the
core of the paper. Suppose we wish to calculate the expectation Eπ[X] =

∫
x
xπ(dx)

of a random vector X under a distribution π(X) defined on space E. Often such an
integral is intractable, so the Monte Carlo approximation

Êπ[X] =
1

N

N∑
i=1

x(i) (1)

is used, where each x(i) is a point simulated from π. Now, π is often non-trivial to
simulate from directly, so a Monte Carlo method is used as a substitute. The main
reason for the popularity of Monte Carlo is that the error of the estimator scales
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as 1/
√
N , without the exponential dependence on the dimension d of X found in

numerical integration.
We outline IS in section 1.1.1 and MCMC in section 1.1.2 below, in advance of a

brief description of SA in section 1.1.3.

1.1.1 Importance Sampling

IS avoids the problem of simulating from π by instead simulating points from a proposal
q. The Monte Carlo approximation analogous to (1) is then

Êπ[X]imp =
1

N

N∑
i=1

x(i)w(x(i)), (2)

where the weight w(x(i)) := π(x(i))/q(x(i)) (note that these weights must be nor-
malised if π is only known up to a normalising constant). The behaviour of this
estimator is closely tied to the choice of q which should be chosen to be as close to π
as possible. Loosely speaking, it is crucial that q should allow an effective exploration
of π (it should have mass in all of the regions where π has appreciable mass), but
it is important for computational reasons that as few points as possible are drawn
in regions where π has little mass. Clearly it is difficult to choose an appropriate q
where π is a complicated distribution, especially in high dimensions. SMC, described
in section 1.2.1, extends IS so that this problem is less pronounced.

1.1.2 Markov Chain Monte Carlo

MCMC takes a rather different approach to simulating from π: a Markov chain with
transition kernel K is constructed such that it has invariant distribution π, then a
realisation from this chain is used in a Monte Carlo estimator as if it is an independent
sample from π. Although the sample is not independent, under weak and easy to verify
conditions it can be shown that the law of large numbers holds in this setting, and
that under some stronger conditions a Central Limit Theorem can hold (Roberts and
Rosenthal [26] contains a thorough review of this material).

A simple, and widely used, method for constructing such a Markov chain for an
arbitrary π is the Metropolis-Hastings (MH) algorithm, shown in algorithm 1. This
algorithm was originally introduced using symmetric proposals in Metropolis et al [21]
(this specific case is known as the Metropolis algorithm), then generalised to the given
form in Hastings [13].

for i = 1 : N do
Simulate x∗ ∼ q(.|x(i−1));
Simulate u ∼ U [0, 1];
if u < min

{
1, π(x∗)q(x(i−1)|x∗)

π(x(i−1))q(x∗|x(i−1))

}
then

x(i) = x∗;
else
x(i) = x(i−1);

end if
end for

Algorithm 1: The Metropolis-Hastings algorithm.
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The proposal q in an MCMC algorithm plays a different role to that in importance
sampling: it is the mechanism by which the chain moves around the space. However,
again it is instrumental in determining the statistical properties of Monte Carlo es-
timators based on the method. For MCMC a good choice of proposal is usually one
that results in a realisation from the chain that is as close to an independent sample as
possible. A useful property of the MH algorithm is that it is possible to use proposals
that do not move in every dimension of X at once. This has the consequence that the
problem of constructing a proposal in a high dimensional space (as is encountered in
IS) is avoided: it is common to move only one of the d dimensions at a time, known
as a single component move.

1.1.3 Simulated Annealing

Our focus now changes from simulation to global optimization. Kirkpatrick et al
[18] constructed an algorithm for global optimization simply by changing the target
density at every iteration of the Metropolis algorithm. Specifically we choose the
target density at iteration i of the algorithm to be πi = πτi(x) := exp(f(x)/τi) where
{τi} is a sequence of “temperatures” that decrease to zero. If we begin with a high
temperature, the peaks of πτi are less accentuated and the function is easier for the
Metropolis algorithm to explore; then as the temperature decreases to zero eventually
all of the mass is concentrated at the global maximum. There is a large literature
on the convergence of simulated annealing (an overview of which can be found in
Henderson and Johnson [14], for example).

1.2 Population Monte Carlo

This section describes two methods that may often offer improvements in performance.
Both are extensions of Monte Carlo simulation methods outlined in the previous section
that, with minor alterations, may be used for global optimization. The first, SMC
(section 1.2.1), is an extension of IS, with the second, population MCMC (section
1.2.2), being an extension of standard MCMC. The motivation for both methods lies
in the idea that using a population of points to explore a target distribution can
be more effective than using a single point (as is the case in standard MCMC): the
population contains information about the target that can be used to construct better
proposals, and should also safeguard against getting trapped in a local optimum. This
is essentially the idea exploited in the very broad class of evolutionary algorithms,
which have the common characteristic of using an evolving population to explore an
objective function. PMC algorithms may be viewed as a type of EA that is based on
the well understood theory of Monte Carlo algorithms.

1.2.1 Sequential Monte Carlo Samplers

We begin this section by noting that IS has the desired property of using a population
of points to explore a target. Suppose we consider extending IS so that there is a
means of moving the population of points in order to explore the target distribution
and reduce the importance of the initial proposal distribution q. Suppose also that we
generalise this idea further: in using this extension to IS to simulate from a sequence
of target distributions π1:T := (π1, ..., πT ), where each πt is defined on a space E, and
the final target in the sequence πT is the distribution of interest. If we choose the
sequence of targets such that π1 is easy to sample from and there is not too much
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difference between one of the targets in the sequence πt and the next πt+1, then the
targets give a “route” to move the particles easily from π1 to πT . This idea is known
as sequential IS, and more precisely proceeds as follows.

To begin, use IS with proposal K1 to draw P weighted points from π1. The i’th
point, x

(i)
1 , has weight

w
(i)
1 =

π1(x
(i)
1 )

K1(x
(i)
1 )

. (3)

To sample from π2, we apply importance sampling sequentially. We apply the kernel
K2(x

(i)
1 , .) to particle i, labelling the new position as x

(i)
2 . We then reweight the i’th

particle:

w
(i)
2 = w

(i)
1

π2(x
(i)
2 )K1(x

(i)
1 )

π1(x
(i)
1 )
∫
x
K1(x)K2(x, x

(i)
2 )dx

(4)

However, the integral in the denominator cannot be calculated in general. Therefore
we cannot use the algorithm in exactly this form. In order to use the methodology
with a sequence of targets π1:N , Del Moral et al [6] construct an alternative artificial
sequence of targets that means that the ideas of particle filtering (introduced in Gordon
et al [12] as a method for using importance sampling sequentially to simulate from a
time-indexed state space) can be applied as follows.

Specifically, the sequence of targets π̃1:N is used, where each π̃t is a function defined
on (E)t, and where the marginal of π̃t on the final tth dimension is πt. Del Moral et al
[6] use the following sequence:

π̃t(x1:t) = πt(xt)

t∏
j=2

Lj−1(xj , xj−1) (5)

where Lj−1 is a backwards Markov kernel.

Applying the sequential importance sampling idea described above to this new
sequence of targets, we obtain the weight update at time t:

w
(i)
t = w

(i)
t−1

πt(x
(i)
t )Lt−1(x

(i)
t , x

(i)
t−1)

πt−1(x
(i)
t−1)Kt(x

(i)
t−1, x

(i)
t )

. (6)

This method gives an extremely flexible framework for sampling from a general
distribution. To use this framework in practice, we first pick a sequence of distributions
π1:T where πT is the target we are interested in, and such that the sequence gives a
gradual transition from π1 to πT . We then define the kernels K1:T that should allow
us to move effectively between the distributions. Much flexibility is allowed here,
including single component moves. Finally we must choose the backward kernels L1:T

in order to minimise the variance of the importance weights. The optimal backwards
kernel in this sense cannot be calculated (it corresponds to the original sequential
importance sampling framework). Advice on choosing the L kernel is contained in Del
Moral et al [6].

Now suppose that the kernel Kt is chosen to be an MCMC kernel. In this case, as
long as πt−1 is not too different from πt a good approximation to the optimal L kernel
is the natural reversal of the MCMC kernel:

Lt−1(xt, xt−1) =
πt(xt−1)Kt(xt−1, xt)

πt(xt)
(7)
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which leads to the weight update:

w
(i)
t = w

(i)
t−1

πt(x
(i)
t−1)

πt−1(x
(i)
t−1)

. (8)

By restricting ourselves to using MCMC kernels (and, in particular, Metropolis-Hastings
kernels, as we use in the algorithm below) we obtain an algorithm that is very easy to
apply. All that is needed is to choose a sequence of target distributions and proposal
distributions for the Metropolis-Hastings moves between the targets. Note that we
can perform as many iterations of the MCMC kernel as we want when moving from
target πt−1 to πt and still use the same weight update.

As described thus far, the resultant algorithm is simply IS, constructed sequentially
on a space of increasing dimension. However, the variance of estimators of the type in
equation 2 can be shown to increase exponentially with t (see Doucet and Johansen [8],
for example), so this method is not of practical use. To remedy this problem, Gordon
et al [12] introduced the idea of resampling at each SMC iteration: to, at iteration
t, sample N new particles independently from the empirical distribution given by{
x
(i)
t−1

}
N
i=1, the current particles and their normalised weights

{
w̃

(i)
t

}
N
i=1 that is

N∑
i=1

w̃
(i)
t δ

x
(i)
t−1

,

with δ
x
(i)
t−1

being the Dirac delta mass at x
(i)
t−1. This use of sequential importance

sampling together with resampling is known as an SMC sampler.
Under weak integrability conditions, estimates from both IS and SMC obey a

Central Limit Theorem. Del Moral et al [6], Doucet and Johansen [8] compare the
asymptotic variances in the two cases, and observe that SMC does not suffer the
exponential growth of the variance of IS. Empirically it is observed that the variance
of estimators from SMC can be orders of magnitude smaller than those from IS.

The algorithm that results from making these choices is given in algorithm 2.
In this algorithm we have also introduced the additional detail that resampling is
not performed at every step: each time resampling is performed, additional noise is
introduced into the particle system, thus often better performance is attained if it
is only performed when required. Instead a criterion that measures the discrepancy
between neighbouring targets is used to decide when to resample. Here we propose to
resample when the commonly used effective sample size falls below some fraction c of
the total number of particles.

A related technique is the cross-entropy method (e.g. Botev et al [5]), which Schafer
[29] shows corresponds to a particular configuration of the general SMC sampler frame-
work.

1.2.2 Population MCMC

The basic idea of population-based MCMC is to run several MCMC samplers in parallel
and to exchange information between these samplers. This was first mentioned in
Geyer [10] and subsequently developed by Liang and Wong [20] and Laskey and Myers
[19], inspired by genetic algorithms. Subsequent developments of the idea are contained
in, for example, Jasra et al [15], Strens [31], Strens et al [32]. Jasra et al [15] contains
a particularly clear and simple explanation of population MCMC, and we take the
algorithms in this section from that paper.
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for i = 1 : N do
Simulate x

(i)
1 ∼ q1(.);

Find the weight w
(i)
1 = π1(x

(i)
1 )/q1(x

(i)
1 );

end for
Normalise {w(i)

1 }Ni=1 to give normalised weights {w̃(i)
1 }Ni=1.

for t = 2 : T do
for i = 1 : N do
w

(i)
t = w̃

(i)
t−1πt(x

(i)
t−1)/πt−1(x

(i)
t−1);

end for
Normalise {w(i)

t }Ni=1 to give normalised weights {w̃(i)
t }Ni=1.

ESS =
(∑N

i=1[(w̃
(i)
t−1)

2]
)−1

;

if ESS < cN then
Resample {(x(i)

t−1, w̃
(i)
t )}Ni=1;

end if
for i = 1 : N do
Simulate x∗ ∼ qt(.|x(i)

t−1);
Simulate u ∼ U [0, 1];

if u < min

{
1,

πt(x
∗)qt(x

(i)
t−1|x

∗)

πt(x
(i)
t−1)qt(x

∗|x(i)
t−1)

}
then

x
(i)
t = x∗;

else
x
(i)
t = x

(i−1)
t ;

end if
end for

end for
Algorithm 2: An SMC sampler using Metropolis-Hastings kernel.
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The fundamental framework is as follows. Suppose that our target density is π on
the domain E. Then we define a new target on (E)M :

π∗(X1:M ) =

M∏
j=1

πj(Xj), (9)

where at least one of the πj is equal to the true target π. The πj may then be chosen
such that simulations from them may be useful in making moves on the true target.
Geyer [10] suggests tempered versions of π: πj(x) = (π(x))1/τj where τj ≥ 1: this is
also a common sequence of functions to use within SMC, and this sequence will be
used extensively in the paper.

A population MCMC algorithm is simply an MCMC algorithm defined on π∗.
Liang and Wong [20], Strens et al [32] and Jasra et al [15] give several examples of
MCMC moves that may be useful on π∗. For simplicity, in this paper we use only
two types of move. The first of these is a “mutation”, where one of the M chains is
chosen randomly, then updated with an MH move (as in algorithm 1). The other is
to swap information between two chains chosen at random. In the most extreme case,
this takes the form of an “exchange” move, where at iteration i the current value x

(i)
a

from one chain is exchanged with the value x
(i)
b from another chain. The acceptance

probability for this move (x∗
a, x

∗
b) =

(
x
(i)
b , x

(i)
a

)
is

A := min

{
1,

πa(x
∗
a)πb(x

∗
b)

πa(x
(i)
a )πb(x

(i)
b )

}
. (10)

More generally, it is possible to propose a swap between a subset of the dimensions of
x
(i)
a and x

(i)
b , with the acceptance probability of such a move also being equal to A as

long as the dimensions are chosen uniformly at random.

1.2.3 PMC And Optimization

As we have seen, there are numerous examples of using ideas from the optimization
literature within simulation algorithms (mostly ideas from genetic algorithms). There
has also been some work that uses simulation techniques for optimization (simulated
annealing being the most prominent), but many of the most recent ideas in this field
have not been used in optimization problems. In particular there is relatively little
work on using PMC despite this only requiring simple modifications to the simulation
algorithms described above (analogous to using SA compared to standard MCMC).

To use an SMC sampler for optimization, the only modification that is required is
that instead of using a sequence of targets π1:T with πT being the target of interest,
we choose a sequence of targets such that they converge to the distribution where all
of the mass is at the global maximum (e.g. use an annealing scheme that finishes with
a temperature of zero). An obvious example of this is to use the same sequence of
targets as is used in SA (as in Peters [25]). This choice will result in the population
of points being concentrated at the global maximum, with the proof of convergence
being exactly the same as those in the simulation case. There are a few examples of
using SMC for optimization, including Johansen et al [17], Peters [25], Schafer [29].

Population MCMC is sometimes used for optimization in the form of parallel tem-
pering. In this configuration, the M targets are chosen in the style of the sequence of
targets chosen in SA, such that some of them are at a very low temperature where the
global maximum obtains most of the mass, and so that there is a sequence of targets
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at higher temperatures that will help the MCMC algorithm to explore the objective
function to find this mass. In this paper, we will choose the M targets to take a differ-
ent form that will help the exploration of the objective function, and instead choose
to use the annealing idea on the composite target π∗. This algorithm is simply SA on
this extended space, and thus inherits the convergence results from this literature.

We will use both SMC and population MCMC later in the paper, where the precise
configuration of the these algorithms we use will be described. The next section focuses
on interval methods: the means by which we will help both SMC and population
MCMC to perform more efficiently.

2 Interval Arithmetic Within Population Monte
Carlo

2.1 Combining Monte Carlo And Interval Methods

This paper looks to use information contained in the interval extension of a function
to aid Monte Carlo algorithms. The key requirement of such an approach is that
this is done without subdividing the domain in the manner of numerical integration
(as is performed in branch-and-bound optimization for example), to avoid the curse
of dimensionality. This distinguishes the methods in this paper from previous work
[9, 27, 28] that made use of interval methods to construct proposals for rejection and
importance samplers. which do rely on subdividing a domain and hence suffer a curse
of dimensionality. Instead, our new approaches inherit their dependence on dimension
from the Monte Carlo methods in which the interval techniques are embedded.

The following section outlines: in section 2.2, the idea of dilated objective func-
tions, the way in which we make use of interval methods; in section 2.3, situations in
which dilated objective functions might provide advantages over standard annealing
approaches; and in section 2.4 the use of dilated objective functions in PMC. A short
review of the fundamentals of interval methods is included in appendix A.

2.2 Dilated Objective Functions

This section outlines the concept of dilating an objective function. Dilation is a concept
we borrow from mathematical morphology (e.g. Glasbey and Horgan [11]) that has
the effect of widening the peaks in an objective function, regardless of their original
width. When the idea of dilation is used in mathematical morphology it is usually
applied to functions that have a discrete domain. In this case computation of the
dilation of the function at any given point is tractable. However, our target density
is usually defined on a complete space, which makes direct approaches to computing
the dilation intractable. This is where interval methods can be used: when our target
density is an elementary function, we can use an interval or affine extension of f to
find an approximation to the dilation. The quality of this approximation depends on
the over-enclosure of f by its interval extension.

In section 2.2.1 and 2.2.2 we describe dilation, and how to use interval arithmetic
to use the idea in practice; in section 2.4 we describe how it may be used in PMC.
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Figure 1: A mixture of normal densities (narrowest), and examples of
dilations by radius ϵ = 2 and ϵ = 10 (widest).

2.2.1 Dilation Of A Function By A Set

We define the dilation of a function f : D → R for a domain D ⊆ Rd by a set B ⊆ Rd

as follows. The dilated function (f ⊕B) : D → R is

(f ⊕B)(x) := sup
y∈Bx

f(y), (11)

where Bx = {b+ x|b ∈ B} ∩D. We restrict our attention to dilation of a function by
a box Bϵ in the set

B = {Bϵ = ([−ϵ, ϵ]× ...× [−ϵ, ϵ]) ∈ IRd|ϵ ∈ R≥0} (12)

We use fϵ to denote the dilation of the function f : Rd → R by the box Bϵ ∈ B and
say that fϵ is the dilation of f by radius ϵ. To see the effect of such a dilation consider
the mixture of normal densities f = 0.5N (−20, 3) + 0.5N (20, 0.1). Figure 1 shows
f , along with its dilations f2 and f10. The effect of dilation is to widen peaks by 2ϵ,
regardless of their original width. For multi-dimensional targets, the dilation widens
peaks in the directions parallel to the axes.

We propose to use dilated functions as an alternative set of auxiliary targets in
PMC: we use a set of dilations of the true target, with radii that begin at some
maximum ϵmax and go through to 0 (to give the true target). Analogous to the use
of tempered targets, the most dilated target will be easier to sample from than the
true target (in particular, it is easier to locate peaks in these targets), and this set of
functions will provide a route for moving points drawn from the most dilated target
to the true target.

2.2.2 Interval Dilation

Although the definition of the dilation of an arbitrary function f is simple, it is difficult
to compute at any given point in the domain of f , except in some special cases (e.g.
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when the set by which we dilate is finite). In order to use dilation on continuous
domains we need an alternative way of calculating it. Suppose we restrict f to being
an elementary function with f : Rn → R and that we only consider dilations by
boxes of radius ϵ. In this case we may find the dilation approximately using interval
analysis. Let F be the natural interval extension of a representation of f (defined in
the appendix). We define the interval dilation of f (with respect to the representation
for f) to be

fϵ(x) = max {F (Bx+ϵ)} (13)

where x ∈ Rn and Bx+ϵ = {b + x|b ∈ Bϵ} with Bϵ ∈ B. An evaluation of an interval
dilation of f has at most four times the computational cost of an evaluation of f , which
makes it feasible to use interval dilations as auxiliary functions in PMC. From hereon
we use the notation fϵ to represent an interval dilation by radius ϵ, rather than the
true dilation as in expression (11). When the natural interval extension of f satisfies
range equivalence, the interval dilation is exactly the same as the true dilation. This
can be achieved if we can find a representation of f in which each input variable only
appears once. However, in many cases such a representation does not exist and we
can only find natural interval extensions that satisfy range enclosure. In this case, for
small dilations we can have some confidence that the interval dilation will be similar
to the true dilation, but the error increases as the size of the dilation grows.

2.3 Comparing Dilation And Tempering

We intend to make use of both tempering (with high temperatures, ti > 1) and dilation
for exploring multi-modal objective functions, but note that both ideas are designed
to make peaks wider, thus easier to discover. In this section we provide an illustration
of situations in which dilation is particularly useful: when the global maximum lies at
the top of a very narrow peak.

As an example we consider a target density (for our Monte Carlo optimization
algorithms) that is a mixture of k univariate Gaussians:

π(x) =

k∑
i=1

wi

σi

√
2π

exp

(
−(x− µi)

2

2σ2
i

)
, (14)

where the parameters µi and σi are such that we can consider the overlap between the
components as being negligible (in everything that follows we will assume that there is
no overlap between the components). We look at the effects of tempering and dilation
on the effective heights, weights and widths (standard deviations) of the components:
the weight of component i is wi, the height, wi/(σi

√
2π) and the width, σi. We choose

this example since the analysis is relatively simple and we can have some confidence
that the results are more widely relevant.

2.3.1 Effect Of Tempering

As previously, we define a tempered version πτ of the target π, for some real “tem-
perature” τ > 0, as πτ (x) = (1/Zτ )π(x)

1/τ where Zτ is a normalising constant of the
density.

Consider the tempered version of a single weighted component pτi (we can consider
the effect component-wise, since the overlap between the components is negligible):

pτi (x) =
1

Zτ

(
wi

σi

√
2π

)(1/τ)

exp

(
−(x− µi)

2

2τσ2
i

)
. (15)
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The effective height is 1
Zτ

(wi/(σi

√
2π))1/τ and the effective width σi

√
τ . Thus we see

the expected behaviour that as the temperature increases, each component gets wider
and the heights of the components tend towards having the same value.

The unnormalised effective weight w
(τ)
i can be easily computed using

w
(τ)
i =

1√
(2π)

1/τ

w
1/τ
i

σ
1/τ
i

∫
exp

(
−(x− µi)

2

2τσ2
i

)
dx (16)

=
1√

(2π)
1/τ

w
1/τ
i

σ
1/τ
i

√
2πσ2

i τ (17)

=

√
τ√

(2π)
(1/τ)−1

w
1/τ
i

σ
(1/τ)−1
i

. (18)

Thus the normalised weight for component i, w̃
(τ)
i , is

w̃
(τ)
i =

w
1/τ
i /σ

(1/τ)−1
i∑

i w
1/τ
i /σ

(1/τ)−1
i

. (19)

So, as τ → ∞, the weight of each of the components becomes equal. As τ → 0, we
observe the expected behaviour that the highest component (the component for which
wi/σi is largest) gets all of the weight

ŵ
(τ)
i →

{
1 if i = argmax wi

σi

0 otherwise,
(20)

(assuming there is a unique highest component).

2.3.2 Effect Of Dilation

The effect of a dilation of radius ϵ on a single component is to insert a rectangle of
height wi√

2πσi
and width 2ϵ into the middle of the density:

(πi)ϵ(x) =



1

Zϵ

wi

σi

√
2π

exp

(
−(x+ ϵ− µi)

2

2σ2
i

)
, x < µi − ϵ

1

Zϵ

wi

σi

√
2π

Φ

(
− ϵ

σi

)
, µi − ϵ ≤ x ≤ µi + ϵ

1

Zϵ

wi

σi

√
2π

exp

(
−(x− ϵ− µi)

2

2σ2
i

)
, x > µi + ϵ,

(21)

where Zϵ is the normalising constant of the density and Φ is the distribution of the
standard normal.

Thus the effective height of the component is 1
Zϵ

wi/(σi

√
2π), so the relative heights

of the components does not change. When ϵ grows large, the dilated component can
be approximated by a uniform distribution, so the effective width is approximately
ϵ/
√
3 (using the standard deviation of the uniform distribution). The unnormalised

effective weight is wi + 2ϵwi/(σi

√
2π).

Consider the ratio of the weights of components 1 and 2. When ϵ is zero, the ratio
is w1/w2. When ϵ is large, the term 2ϵwi/(σi

√
2π) dominates wi, so the ratio tends

towards the ratio of the original heights of the components, (w1/w2)(σ2/σ1).
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2.3.3 Comparison Of The Effects

As the number of points simulated by a Monte Carlo algorithm tends to infinity, the
number of points from each component will be drawn in proportion to the weights
of the components. However, for a finite sample, the widths of the components are
significant since they influence how easy it is for the Monte Carlo algorithm to find the
component. The width of a dilated component, ϵ/

√
3, is independent of the original

width, whereas the width of the tempered component, σi
√
τ , is not. This indicates

the main advantage of dilations over tempered targets – the effect of the dilation is
large however narrow the original mode is. When tempering we may have to use an
extremely high temperature to ensure that the width of a narrow component becomes
significant. The disadvantage of doing this is that the temperature may have to be so
high that the target function is approximately 1 everywhere, which makes it of little
use.

Thie example also illustrates a known weakness of tempering when used in simu-
lation. For a high temperature, a method will simulate many points in regions corre-
sponding to components that have little weight in the untermpered target. Dilation
suffers a similar weakness: although it may be used to find narrow components, it may
simulate many points in components that have little weight in the undilated target.

2.4 Dilation In PMC

Alongside devising targets πi for use in PMC algorithms using annealing, we use
instead dilation to construct alternative πi. Interval dilation is the mechanism through
which we allow PMC to make use of interval methods. When simulating from the
target fϵ, each Monte Carlo point gains a view of the range of the distribution or
objective function in the box of radius ϵ around the point.

Here we describe precisely how we will use interval dilations in PMC algorithms,
first in SMC, then in population MCMC. In both cases we use auxiliary targets as
the mechanism by which the Monte Carlo algorithm makes use of the information
provided by interval methods, specifically

� Sequential Monte Carlo. To use interval dilated targets in SMC we simply
modify the SMC optimization method outlined in section 1.2.3 to use a sequence
of targets that is both annealed and dilated. Specifically, we choose a sequence
of functions π1:T where πt = π

1/τt
ϵt , with τt being some sequence of temperatures

that decreases to zero (using one of the annealing schemes described in section
1.1.3) and ϵt some sequence of dilation radii decreasing to zero.

� Population MCMC. The most straightforward use of dilated targets in pop-
ulation MCMC is to chose the targets πj in equation 9 to be πj = πϵj with ϵj
some sequence of dilation radii decreasing to zero. We then perform MCMC or
SA on the composite target π∗ to obtain, respectively, a simulation or global
optimization algorithm.

Since the methods we describe do not deviate from the frameworks described in section
1.2 - they are purely Monte Carlo methods - all of the properties of these methods are
exactly as described in that section.
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3 Optimisation Example

In order to illustrate precisely the benefits of our proposed approach, we focus on a
concrete example. The problem we tackle is the maximisation of a (unnormalised)
Levy density l : R2 → R given by the following equation:

l(X1, X2) = exp

{[(
5∑

i=1

i cos((i− 1)X1 + i)

)
(

5∑
j=1

j cos((j − 1)X2 + j)

)
+

(X1 + 1.42513)2 +

(X2 + 0.80032)2
]
/40
}
. (22)

This is a test problem from the optimization literature with a large number of unequal
peaks known as the “Levy Number 5”. The true maximum is found at (−1.3068,−1.4248)
(to 5 s.f.). This function (shown in figure 2a) is challenging for most methods, but
is exactly the type of problem for which we anticipate interval methods being useful
because:

� The modes are narrow and well separated. Using an annealed version of
the function with a high temperature only partially helps in this extreme case:
a very high temperature is required in order the make the modes wide enough
to be easily found, but this results in the entire function being too flat for this
annealing to be useful.

� It is an elementary function.

� The variables X1 and X2 do not occur many times in the expression,
so over-enclosure will not be large.

In the following sections we describe the results of applying the methods described
in this paper to this example problem, using approximately the same computational
time for each approach (with the exception of one of the runs of SMC, where the
performance is sufficiently good for us to use a tenth of the effort). We ran each
algorithm 25 times: table 1 gives the mean absolute distance from the true maximum
(to 4 d.p.). To give a balance between moving within the modes and having the chance
to move between modes, all algorithms use the following proposal in their Metropolis-
Hastings moves

q(·|x(i)) = 0.5N (·|x(i), 0.1I) + 0.5N (·|x(i), 9I), (23)

where N (·|µ,Σ) is the normal distribution with mean µ and variance Σ. All initial
values are drawn uniformly from [−20, 20]× [−20, 20].

3.1 Simulated Annealing

3.1.1 Standard Simulated Annealing

We used SA as described in section 1.1.3, with π1/τi = l(X1, X2)
1/τi . We used 20000

iterations, with τi = 1 for 1 ≤ i ≤ 10000 and τi = (20001 − i)/10000 for 10000 < i ≤
20000. Starting with the τi > 1 made little impact on the results in this case: the use
of targets with τi > 1 to aid exploration of the space is investigated below within the
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(a) The Levy Number 5 test function.

(b) The Levy Number 5 test function dilated by ϵ = 0.5.

(c) The Levy Number 5 test function dilated by ϵ = 1.

Figure 2: The Levy Number 5 test function, together with its dilations by
ϵ = 0.5 and ϵ = 1.
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Table 1: The performance of several optimization algorithms on the Levy
density in equation 22.

Algorithm Mean abs error

Simulated annealing 9.8190
Simulated annealing with dilation 3.2727
Population version of simulated annealing, all functions the same 13.5991
Tempered population (MCMC), max temp 10 6.0085
Tempered population (MCMC), max temp 100 5.0469
Tempered population (MCMC), max temp 1000 5.4440
Dilated population (MCMC), max radius 0.5 15.2719
Dilated population (MCMC), max radius 1 0.0162
Dilated population (MCMC), max radius 2 0.0158
Tempered SMC, 200 particles 0.5099
Tempered and dilated SMC, 20 particles 0.0408

population MCMC algorithm. We observe that SA exhibits very poor performance,
with a mean error of 9.8190.

3.1.2 Simulated Annealing With Dilation

Here we explore the use of SA, where the sequence of distributions uses dilation as well
as tempering. Dilated versions of the objective function can be found in figures 2b and
2c. We observed that the effect of dilation is to significantly smooth out the objective
function, making it easier to explore. At iteration i of our dilated SA algorithm our
target distribution is π

1/τi
ϵi , where the τi sequence is the same as in the previous section,

and ϵi is a sequence of dilation radii that decreases to zero. The sequence we use is
to space ϵi equally from ϵmax = 1 at i = 1 to 0 at i = 19000. For i > 19000, we take
ϵi = 0. The performance of dilated SA is much better than standard SA, with a mean
error of 3.2727, although the true maximum is rarely found.

3.2 Population MCMC

We now examine the use of population MCMC, as described in section 1.2.2. We use
the target distribution in equation 9, where one of π1 is the true target distribution
l(X1, X2), and the number of targets is M = 100. To use this algorithm for optimiza-
tion we simply temper the target at every iteration: we use (π∗)1/τi . As for SA, we
performN = 20000 iterations, with ti = 1 for 1 ≤ i ≤ 10000 and τi = (20001−i)/10000
for 10000 < i ≤ 20000. At each iteration of the algorithm we uniformly randomly se-
lect a chain to “Mutate”’, then uniformly randomly pick a chain to “Exchange” with
its neighbour. The estimated maximum from the algorithm is taken to be the value
x
(N)
1 : the final point of the chain for the true target distribution.
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3.2.1 Population MCMC With Tempering

This algorithm uses a population of tempered targets: we choose the πj to be tempered
with temperatures τj ≥ 1 to help exploration of the target. Specifically we choose
τj = 1 at j = 1, τj = τmax at j = N and the other temperatures equally spaced between
these two extremes. The errors for τmax = 10, 100 and 1000 are 6.0085, 5.0469 and
5.4440 respectively. We observe a relatively small improvement over SA in all cases:
the use of tempered targets does help the exploration of the space, but the effect is
not dramatic. Note that it is difficult to tune the method in terms of deciding the
number of members of population and the maximum temperature that should be used.
It needs to be chosen large enough in order to allow moves between the modes, but
not so large that no useful path is created between the distributions in the population.

3.2.2 Population MCMC With Dilation

We now use a population of dilated targets: we choose the πj to be dilated with radii
ϵj ≥ 0 to help exploration of the target. We choose ϵj = 0 at j = 1 (to give the
true target), ϵj = ϵmax at j = N and the other radii equally spaced between these
two extremes. The errors for ϵmax = 0.5, 1 and 2 are 15.2719, 0.0162 and 0.0158
respectively. Here the improvement over SA and population MCMC with tempering
is dramatic. As long as ϵmax is large enough to span the distance between peaks, the
peak containing the true maximum was located at every run of the algorithm. This
provides a clear demonstration of when dilated targets may be useful and also, when
comparing to dilated SA, of the advantages of population MCMC over the use of a
single chain. Similarly to the tempering approach, it is not obvious in advance how
to choose the most dilated target in order to achieve a good performance. Here, when
ϵmax = 0.5, no useful paths are created between the modes, leading to poor results.

3.3 Sequential Monte Carlo

Finally we apply the SMC algorithm in algorithm 2 to this problem. We use a sequence
of T = 200 targets, and consider two schemes:

� Annealing only: we choose a sequence of targets πt = π1/τt , with τt = 1 for
1 ≤ t ≤ 100 and τt = (201 − t)/100 for 100 < t ≤ 200. This choice yields
an algorithm that is essentially similar to running a population of simulated
annealing algorithms, with a selection step (via resampling) to keep only the
best performing members of the population. We do not make use of tempered
targets with τ > 1 in order to give a clearer comparison with the SA in section
3.1.1.

� Annealing and dilation: we choose a sequence of targets πt = π
1/τt
ϵt , where

τt is the same sequence as for the annealing only sampler, and ϵt is a sequence
of dilation radii that decreases to zero. Specifically, the ϵt are equally spaced
from ϵmax = 1 at t = 1 to 0 at t = 190, and then for t > 190, we take ϵi = 0.

Using N = 200 particles, the annealing only algorithm achieved an error of 0.5099.
This is favourable compared to most of the other algorithms used, except for those
that use dilation, providing a clear demonstration of how effective SMC can be in
this setting. Also using 200 particles, the SMC sampler that uses annealing and
dilation found the peak containing the true maximum on every run. In this case,
we experimented with reducing the number of particles and found that using as few
as 20 particles resulted in the correct peak being found on every run, yielding an
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error of 0.0408 (similar to the error when using 200 particles, which is not reported
in the table). None of the other algorithms were able to give a comparable level of
performance for similar reduction in computational effort, again illustrating how the
use of dilated targets may be beneficial.

4 Simulation Example

In this section we use interval dilated versions of a target π as auxiliary targets within
the population MCMC algorithm. We apply the algorithm to inferring the means of a
mixture of Gaussians, an example that is also used in Jasra et al [15] for illustrating the
properties of population-based simulation algorithms. Similar to that work, we do not
consider the best statistical approach to the problem; rather we use the fact that there
are known multiple modes in the posterior distribution due to the lack of identifiability
of the mixture, and examine the mixing of the method over these modes. We begin by
giving the specifics of the target under consideration and the algorithm we apply to it,
then show the effect of interval dilation on the target. We then examine the effect of
dilation on the likelihood in the two component model, followed by examining how the
performance of population MCMC algorithms is affected by the number of mixture
components (which affects the dimensionality of the parameter space). This section
aims to illustrate limitations of the proposed approach, as well as its strengths.

4.1 Model And Algorithm Details

Let {yi}Ni=1 be a data set with yi ∈ R. We assume that the yi are i.i.d., each with
density:

p(yi|{µj ,Σj , wj}kj=1) =

k∑
j=1

wjN (yi;µj ,Σj), (24)

where N (yi;µj ,Σj) denotes a normal density on y with mean µj and variance Σj . We
apply the population MCMC algorithm to the posterior for the means of a mixture of
Gaussian densities

p({µj}kj=1|y) = p(y|{µj ,Σj , wj}kj=1)p({µj}kj=1). (25)

Our results are based on 5 data points from each mode (similar results in terms of the
relative performance of the algorithms were observed for when using 100 or 1000 data
points per mode) and we take the mean of the j’th component to be 3(j − 1). We use
the same variance and use an equal weight for each component.

For the population MCMC algorithm, at each iteration we uniformly at random
select a chain to “Mutate”, then uniformly at random select a chain to “Exchange”
with its neighbour. There are two accept-reject stages in this algorithm, thus one
iteration of the algorithm costs roughly twice as much as a standard Metropolis-
Hastings algorithm. We compare population MCMC algorithms that use tempered
auxiliary targets with population MCMC algorithms that use interval dilated auxiliary
targets. We always use N = 10 targets, including the true target. Our tempering
choice is similar to that in Jasra et al [15] – we choose the temperatures to be equally
spaced between 1 and some maximum Tmax (inclusive of these limits).

The dilation scheme is influenced by what we know about the posterior. We pick
a maximum dilation radius, ϵmax = 2, that is about the same as half of the distance
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between the nearest modes in the posterior. We choose interval dilations with ϵ equally
spaced between 0 and 2 (including these two limits).

The choice of proposals for the “Mutate” move in the algorithms is not trivial,
since it is likely that better performance will be obtained by using different proposals
in different auxiliary chains. We ignore this issue here and choose the same proposals
for each chain. We choose a random walk proposal – where xt is the current state of
the chain:

q(xt+1|xt) = 0.5N (xt+1;xt, 0.1I) + 0.5N (xt+1;xt, 9I). (26)

This proposal is chosen in order to give a balance between moving within the modes
and having the chance to move between modes.

4.2 Illustrations Of Interval Dilations

The idea of using interval dilations is that they provide a path in the product space
between the two well separated modes in the true target. It is easy to see this by
looking at plots of interval dilations of the likelihood. The likelihood we consider is
for the 2 dimensional (k = 2) case, with each component in the mixture having a
variance of Σi = 0.01. In figure 3a we show the true likelihood, with its interval
dilations by 0.5 and 2 in figures 3b and 3c respectively. In the figure 3b we observe
the desired effect of interval dilation; that it makes the peaks in the likelihood wider,
despite being very narrow in the original function. However we also observe, noting
the change in scale between the two figures, a potential drawback of the approach:
the over-enclosure of the likelihood is very large, even with only 5 data points. This
over-enclosure arises due to the likelihood being a product of terms. The parameter is
present in the representation for the likelihood the same number of times as there are
data points, thus the dependency problem is severe and a very large over-enclosure
results. In this case, we do not anticipate the over-enclosure to adversely effect the
performance of the method, since the normalising constant of the function used in the
MCMC does not matter. However, we highlight that over-enclosure will always result
from using a likelihood that takes the form of a product. This has the potential to give
interval dilations that have shapes that are difficult to predict. For example, figure
3c shows that for the interval dilation by radius 2, the mass is dominated by over-
enclosure in the region where the dilations of the two modes overlap. This function
is very different, and much less useful that, the true dilation of the likelihood by the
same radius.

4.3 The Effect Of Dimension

In this section we consider three separate algorithms: the standard random-walk
Metropolis-Hastings algorithm; the population MCMC algorithm with tempered tar-
gets (using the tempering scheme above); and the population MCMC algorithm with
dilated targets (using the interval dilation scheme above). We generate 10,000 points
using each algorithm. We compare the performance of each method as the dimension
increases. The variance of each component was Σi = 0.062 in all of the experiments.
We use tempering and dilation schemes that should be well suited to the problem
under consideration: for the dilation scheme ϵmax = 2 and for the tempering scheme
Tmax = 100.

We initialise every chain in every algorithm at the mode (0, 3, ..., 3(k−1))′ (for the
k dimensional target in equation (25)) and generate 106 points using each algorithm.
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(a) The likelihood.

(b) Interval dilation by ϵ = 0.5.

(c) Interval dilation by ϵ = 2.

Figure 3: The interval dilation by different values of ϵ of the likelihood
of the means of a Gaussian mixture with two components, where each
component in the mixture has a variance of 0.01.
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The first 40% of the points were discarded as a burn in period. We find the trace
of the autocorrelation time (this is infinite if there is no movement in one or more
of the dimensions), the sample mean and the number of jumps between modes for
the points generated by each of the algorithms. The sample mean should give an
idea as to how many of the modes the algorithm has found – the mean should be the
same in each dimension, taking a value of 3(k− 1)/2 in k dimensions. The integrated
autocorrelation time (ACT) was estimated for each method. The results are displayed
in table 2 (“MH” is standard Metropolis-Hastings, “Temp” refers to the population
MCMC method with a tempered population and “Dil” refers to the population method
with a dilated population).

Table 2: Sampling results of the population MCMC algorithms.

Dim. Method Mean ACT No. jumps

2 MH (1.9181, 1.0835) 196.5 3
2 Temp (1.5014, 1.5006) 142.8 612
2 Dil (1.5256, 1.4732) 89.0 2030
3 MH (-0.0048, 3.0086, 5.9950) 171.8 0
3 Temp (2.0958, 3.7941, 3.1213) 177.0 354
3 Dil (3.9928, 2.2137, 2.7960) 147.4 2023
4 MH (-0.0167, 3.0189, 6.0239, 9.0166) 194.5 0
4 Temp (0.0460, 3.0150, 6.1487, 8.8768) 71.4 216
4 Dil (5.0836, 2.3675, 5.3397, 5.2494) 103.9 3155
5 MH (0.0251, 3.0267, 5.9678, 9.0289, 11.9773) ∞ 0
5 Temp (0.0071, 2.9286, 5.9391, 8.9760, 11.9646) 157.7 0
5 Dil (-0.0259 3.0046 6.0150 9.1281 11.9708) 66.8 301
6 MH (-0.0216, 2.9550, 5.9537, 9.0060, 12.0820, 15.0631) 197.4 0
6 Temp (0.0083, 2.9775, 6.0146, 8.9906, 11.9232, 15.0070) 162.4 0
6 Dil (0.0081, 3.0287, 5.9113, 9.0760, 12.1069, 15.0650) 23.1 0

We see that the interval dilations have helped us to jump between the modes in
cases where they are too narrow for the tempered population MCMC algorithm to
work. These results also suggest the advantage of interval dilation over tempering is
maintained in higher dimensions. However, this advantage is only present when the
support of the peaks in the target is small – in this case the interval dilation scheme
is more effective at finding the peaks than the tempering scheme. When the support
of the peaks is larger (by the components from which we simulated the data having a
higher variance) we found that this advantage is lost (results not shown). In this case
the tempering scheme has no problem finding the modes and there is no longer an
advantage in interval dilation. In fact, in this case the interval dilated targets are less
useful than the tempered targets since they are a different shape to the true target.
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5 Discussion

In this paper we study the problem of global optimization for objective functions
with narrow, well separated peaks. PMC methods are natural extensions of simulated
annealing that use a population of points to tackle this type of problem. However,
PMC methods are usually based on annealed targets, which are not effective if the
modes in the objective function are too narrow. This paper describes a method for
incorporating the information provided by interval methods into PMC algorithms,
through their use in finding dilated target functions, in order to more effectively explore
this type of target function.

Empirically we find that SMC samplers in particular can perform well on this
type of problem. One further appealing property of these methods is that many of
the choices we may make in the algorithmic design can be partially, or sometimes
fully, automated. To simplify the presentation of the algorithm, these ideas were not
included in the paper: the sequence of distributions may be chosen automatically as the
algorithm progresses, in order to ensure the distance between successive distributions
is not too large; and the proposal distribution for the Metropolis-Hastings step may be
chosen adaptively, to match the properties of the distribution being explored at each
iteration [3, 4, 7, 29]. This can make SMC easier to tune than population MCMC;
designing adaptive schemes is more difficult for MCMC algorithms (see Andrieu and
Thoms [1] for a review). SMC samplers may also be improved by using alternative
resampling schemes (see Doucet and Johansen [8]; stratified resampling is often a good
choice) or using proposal distributions that exploit the gradient or curvature of the
target distribution (e.g. Septier and Peters [30]).

We have observed that interval methods, through the use of dilated target distri-
butions, can significantly improve the performance of Monte Carlo methods. Similar
improvements over annealing-only schemes should be expected when three conditions
are satisfied:

1. the objective function is an elementary function;

2. there are narrow, well separated peaks;

3. the over-enclosure of the objective function is small enough that the interval
dilation is similar in shape to the true dilation.

The last of these conditions is probably the most important. It is satisfied when each
variable only occurs a small number of times in the function expression - recall that if
each variable only occurs once, the dependency problem does not occur, and there is
no over-enclosure. This issue means that we advise caution in using the approach with
posterior distributions or likelihoods that involve the product over a large number of
terms. In some cases this can be avoided through the use of summary statistics.

Several ways of countering the dependency problem have been devised (see e.g.
Moore et al [24]), but are out of the scope of this paper. Any of these alternative
methods can be used as a substitute for standard interval methods in most of the
applications in this paper, and if they yield a smaller over-enclosure with a small ad-
ditional computational cost, it is likely that an improvement over the results obtained
in the paper will be obtained.
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A Interval Methods

This appendix contains a summary of the fundamentals of interval analysis that are
required for this paper, for researchers who are not familiar with this field.

Interval methods have their roots in numerical analysis, with the original aim
being to describe errors due to performing calculations using the finite representation
of real numbers in a computer. The methods keep track of the errors introduced by
the calculation, so it is possible to automatically decide if it is necessary to refine the
calculation in order to reduce the error. The first work in this field was the introduction
of interval analysis by Moore [23]. This idea lets us achieve the following. Suppose
we have a real valued function f : D → R with D ⊆ R, with the range of f over
a subset E ⊆ D defined to be f(E) = {f(x) | x ∈ E}. For any interval ID ⊆ D,
interval analysis gives a computationally cheap way of finding an interval IR ⊂ R such
that f(ID) ⊆ IR, for a large class of functions f . This property is known as range
enclosure. In some cases f(ID) is close enough to IR for us to be able to use IR as
an approximation for f(ID) (in fact, in some cases we have IR = f(ID)). However,
sometimes it is the case that IR is significantly larger than f(ID), in which case we
say we have a large over-enclosure. It is this computationally cheap manner of finding
a “range approximation”, an interval IR such that IR ≈ f(ID), that we make use of
in the paper. The major limitation on our use of interval analysis is in the case where
we have a large over-enclosure.

In this section (based mainly on the descriptions in Jaulin et al [16] and Sainudiin
[27]), we introduce interval extensions of functions (section A.1). The discussion of
their use for optimization leads us on to the main contribution of the paper in section
2, where these methods are used within PMC.

A.1 Interval Extensions

We begin by making some definitions. The interval extension of the real numbers,
is the set of compact intervals in R, IR := {[a, b] | a, b ∈ R, a < b}. We denote the
minimum value of an interval X ∈ IR by x and its maximum by x. Likewise, the
interval extension ID, of any subset D ⊂ R is: ID := {[a, b] | a, b ∈ D, a < b}. We say
that a function F : ID → IR satisfies range enclosure on f : D ⊂ R → R if ∀X ∈ ID,
f(X) ⊆ F (X), with range equivalence if f(X) = F (X). In this section, for any f that
is a composition of commonly used functions, we give a recipe for building a function
F : ID → IR that satisfies range enclosure with respect to an arbitrary f (where f
is an elementary function) and also inclusion isotony : ∀X,X ′ ∈ ID with X ⊆ X ′,
F (X) ⊆ F (X ′). Such a function is called an interval extension of f .

The interval extension that we define is a “natural” interval extension. To define
a natural interval extension of f , we need to consider a “representation” of f : that
is, we need to express it as a composition of “simple” functions. We then define the
natural interval extension to be the composition of natural interval extensions of each
of these simple functions. Thus, to begin we define interval extensions of arithmetic
operations, then move on to interval extensions of standard functions.

Arithmetic on IR is defined as

X ∗ Y := {x ∗ y | x ∈ X, y ∈ Y }, (27)

where X,Y ∈ IR and ∗ ∈ {+,−,×, /}, except for when ∗ is / and 0 ∈ Y , in which
case we leave X ∗Y undefined (note that when used in practice, we use the convention
that dividing by zero results in infinity). Because of the monotonicity of each operator
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on the first argument, it is easy to see that the minimum and maximum of X ∗ Y are
attained on the boundary values of X and Y , thus we can write expressions for X ∗ Y
for each value of ∗ using these boundary values: e.g. X + Y = [x+ y, x+ y].

We now define the set of standard functions G to be

G := {ax, logb(x), x
a, ax, x+ a, |x|, sin(x), cos(x), tan(x),

sinh(x), cosh(x), tanh(x), arcsin(x), arccos(x),

arctan(x)} .

where a ∈ R and b ∈ R≥0,̸=1 are constants. Other functions may be included in
this set, but here we keep close to the conventions established in the literature on
interval arithmetic. For each of the functions in G that is monotone, again, the interval
extension can be defined in terms of the boundary points of an input interval. For
example, for X ∈ IR:

exp(X) = [exp(x), exp(x)]. (28)

It is also simple to define interval extensions of the members of G that are not monotone
but piecewise monotone. For example, if an input interval is such that cos(x) is
monotone on this interval, the interval extension is given simply by evaluating cos
on the endpoints of this interval. However, if (for example) the interval contains any
point in the set {2k/π} (for integer k) then we know that the upper bound of the
output interval should be 1, and that the lower bound is given by evaluating cos on
the endpoints of the interval. It is easy to see that functions on IR defined in this way
satisfy range equivalence.

Finally we say that an elementary function f : D ⊆ R → R is a function that may
be expressed as a finite combination of constants, variables, arithmetic operations,
standard functions and compositions, and denote the set of elementary functions by
E . We refer to a particular expression of f ∈ E as a finite combination of constants,
variables, arithmetic operations, standard functions and compositions as a representa-
tion for f . Every member of E has an infinite number of representations, for example
f(x) = 1 − 1

x+1
can be rewritten as f(x) = x

x+1
+ 5 − 5. We then define the natural

interval extension of a representation of f ∈ E as the function F : ID → IR where
every constant, variable, operation and standard function in the representation of f is
replaced by its interval counterpart. The Fundamental Theorem of Interval Analysis
says the natural interval extensions of elementary functions satisfy inclusion isotony
and range enclosure.

Importantly for our use of interval methods, it is trivial to extend these re-
sults to functions defined on multi-dimensional domains. Suppose we define IRn :=
{(X1, ..., Xn) | Xi = [ai, bi] with ai, bi ∈ R, ai < bi} to be the set of compact boxes
(Cartesian products of intervals) in Rn, and consider the natural interval extension
F : IRd → IR of an objective function f ∈ E . We have the following result on the
over-enclosure of f by F (from Kearfott [2]: there exists a constant K, independent of
the box X where w(F (X))− w(f(X)) ≤ Kw(X), with w(X) denoting the maximum
of each the widths of each of the dimensions of the box X.

In practice, the extent of the over-enclosure of a function f ∈ E by a natural
interval extension F depends on the representation used for f . A simple example
where the over-enclosure depends on the representation is f(x) = 1 − 1

x+1
= x

x+1
.

Using the definitions earlier in this section, evaluating the first and second expressions
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on [0, 1] gives

f(x) = 1− 1

[0, 1] + 1
(29)

= 1− 1

[1, 2]
(30)

= 1− [1/2, 1] (31)

= [0, 1/2] (32)

(the true range) and

f(x) =
[0, 1]

[0, 1] + 1
(33)

=
[0, 1]

[1, 2]
(34)

= [0, 1], (35)

an over-enclosure, respectively.
Over-enclosure does not occur if each variable only occurs once in a representation

for a function. When the same variable occurs more than once, an over-enclosure
because of the “dependency problem” is often the result. A simple illustrative example
is evaluating the interval extension of the function f(x) = x×x on the interval [−1, 1].
We obtain a bound on the range of [−1, 1]. We do not obtain the true range of
[0, 1], since we do not acknowledge that the arguments of the × operation are the
same (if we used the function x2 we would not have this problem). To avoid the
dependency problem and thus minimise over-enclosure, a good rule of thumb is to use
a representation that minimises the number of occurrences of each variable.

In conclusion, for f in the set of elementary functions, interval arithmetic yields a
computationally cheap (a cost of twice that of evaluating f) method for bounding the
range of f on an interval. In the following section we outline a way in which this has
been exploited to construct a global approximation algorithm.

A.2 Implementation

Interval arithmetic is a rather different idea to most others used in computational
statistics. To be used easily in general it requires the used of a software library that
converts user-inputted functions into their interval extensions. Fortunately, there are
a number of libraries available for interval analysis. In C++, the C-XSC and boost

libraries contain interval classes. Libraries are also available for Matlab (Intlab) and
python (within mpmath). In these libraries each operation is overloaded with an interval
counterpart, therefore to compute interval extensions, one needs only to evaluate the
desired function on an interval rather than a floating point number.
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