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Interval uncertainty is ubiquitous. In practice, we usually know the values
of physical quantities with uncertainty: whatever estimate x̃ we get from mea-
surements or from experts is, in general, different from the (unknown) actual
value x of this quantity.

Often, the only information that we have about the estimation error ∆x
def
=

x̃−x is the upper bound ∆ on its absolute value: |∆x| ≤ ∆. In such situations,
based on the estimate x̃, the only information that we have about the actual
value x is that x is contained in the interval [x, x] = [x̃−∆, x̃+∆].

What do we do with (interval-valued) estimates? What do we usually
do with measurement results (and expert estinates)?

First, we use them to estimate the values of related quantities y, in particular,
to make predictions about future values of different physical quantities. These
results we can present as numbers, or we can visualize them, to make it easier
for us humans to understand.

In many practical situations, there is also a second stage, on which we use the
results of the first stage to make decisions: namely, once we know the predicted
outcomes of different actions, we select an alternative with the most beneficial
outcome.

Sometimes, we also need a preliminary stage: namely, when we have several
different estimates of the same quantity, we need to combine them into a single
estimate.

What was presented at the conference. Several papers at this conference
deal with problems appearing on all these stages.

Preliminary stage. Paper [2] deals with the preliminary stage: namely, it
describes reasonable idea of how to handle the cases when different interval
estimates are inconsistent.
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First stage. Papers [3, 6, 7] deal with the problems related to the first stage,
when we estimate the interval of possible value of different quantities y which
are related to the directly estimated quantities x1, . . . , xn by a known relation
y = f(x1, . . . , xn).

Paper [6] uses interval computations to predict reservoir inflows in extreme
climate situations. Specific feature of such situations is that they are rare and
thus, there is not enough data to accurately determine the corresponding prob-
abilities, so interval uncertainty is an appropriate tool.

Paper [7] describes the need (and the possibility) to go beyond traditional in-
terval computations. Namely, traditional interval computation techniques com-
pute the full range on the corresponding function on the given intervals [xi, xi],
i.e., estimate the interval

[y, y] = {f(x1, . . . , xn) : x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]}.

This is the only way to get guaranteed estimates – which is important if we deal
with critical situations where crossing some thresholds for y may be disastrous.
However, in many practical applications, the resulting estimates are unneces-
sarily pessimistic: e.g., they consider the possibility that all input take extreme
values at the same time, which is often highly improbable. To make more realis-
tic estimates, the paper [7] first consider the most optimistic estimates – leading
to the narrowest interval for y – and then finds realistic intervals as appropriate
combinations of pessimistic and optimistic ones.

Paper [5] deals with visualization of the resulting interval uncertainty. For
example, subintervals of the interval [0, 1] can be represented as convex combi-
nations of the intervals [0, 0], [1, 1], and [0, 1]. Thus, a natural way to visualize
such an interval is to use colors – which are, in our perception, convex combi-
nations of three basic colors: red, green, and blue. Intensity of the color can be
used to describe how confident we are in the corresponding interval estimate.

Second stage. Finally, paper [1] deals with the second stage, i.e., with decision
making based on interval data. Decision making under interval uncertainty is
often a challenge, since while real numbers are naturally ordered, there is no
natural total (linear) order between intervals. So, to make a decision based
on interval-valued outcomes, we need to use some reasonable ordering of the
intervals. If we want an automatic decision, we need a linear order; if we want
a guidance to a human decision maker, then already a partial order will be
helpful. For this purpose, the paper [1] describes all partial orders (on the set
of all intervals) that satisfy some reasonable conditions.
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