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1. Introduction

Given: [A] = [A]T = ([a];;) € IR™ ™ regular, [b] = ([b];) € IR™

Enclose the symmetric solution set

Soym = {z €R"| Az =b, A= A" € [4] =[A]T, be [b]}

More frequently: Enclose the solution set

> = {zeR"| Az =0b, A€[A], be [b]}



Example 1

(1 [01] ([0
Al = < 0,1] [-4,—1] ) - Bl= (

N




Example 2

[A]:<[—11,1] [_—1’11]> ’ [b]:@)

[A] contains two sing. matrices but no sing. symmetric matrix.

[-1,1] ~ [-14¢,1 — €] : Arbitrarily large overestimation!
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Thus the hull inverse is not adapted to the
optimal treatment of symmetric matrices.

However, at present, no special methods
have been devised for this case, and we
shall content ourselves with the unsymmetric
treatment of symmetric matrices.

Neumaier, Interval Methods for Systems of
Equations, 1990, p. 95.

Unless you are able to handle dependent data,
you Wwill never get interest of the engineers.

Babuska, conversation with J. Rohn, 1992.
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2. Interval Cholesky method (Alefeld/M. 1993, 1995, 2008)

1. LLY decomposition

for j ;=1 to n do
j—1
(155 = (lalj; — > [M2)1?2
k=1
for: . =354+ 1 ton do

7—1
(i := (lalij — > [Malllje) / (15
k=1

2. Forward substitution 3. Backward substitution
for : .= 1 to n do for : := n downto 1 do
1—1 n
[yl; := ([bl; > _[04[y]5) /[ (2] = ([y]; — > [l]ji[iﬂ]?)/[l]ii
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Representation of [2]¢ = ICh([A4],[b]) D Zsym

a) Standard formulae

b) Multiple product
[z]¢ = [(DIOLIDTADID([L)PDT(... (L)~ DT (D] (
(D] (L) =D (D) =D (.. (L) DDV p))) ..

Cc) Recurrence

_ ( lal11 [d* : n—
[A] = ( [0]11 Al ) with [¢] € IR" 1.

The Cholesky decomposition ([L], [L]?) of [A] exists, if 0 < a11
and if either n =1, [L] := (4/[a]11), or n > 1 and the Cholesky

decomposition ([L]’,[L]"!) of [A] — [c][c]! exists. Then

[a]

[L] := ( V[a]ll ) . [2]¢ asin a) .
[c]/y/[al11 [L)



Example 3 ([A] H—matrix)

A= (ot W) e

Y
21 |]Zsym 7=
ﬁ—zsym [Xsym #
13 1= #
> ¢
1 2 " [CE]C G

Q Q Q@ Q@
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3. Known Results (Alefeld/M. 1993)

Theorem 1

If [A] € IR™*" is an H—matrix with [A] = [A]Y and 0 < a;; for
i=1,...,n, then [z]¢ exists.

T heorem 2

Let [A] = [A]Y € IR™*™ be tridiagonal and let there exist a
symmetric positive definite matrix A € [A] with (4) = ([A]).
Then [z]¢ exists.

Theorem 3 (Quality of enclosure)

Let [A] = [A]L € IR™ ™ be an M—matrix and let [b] € IR" sa-
tisfy >0 or 0€[b or b<O.

Then [2]¢ =1Zeym =[x = [2]C.

11



4. New Results (Alefeld/M. 2008)

T heorem 4

Let [A] = [A]Y € IR™*™ contain a symmetric positive definite
matrix. If [2]¢ exists then [z]¢ exists.

Theorem 5

Let [A] = [A]Y € IR™X™, If all symmetric matrices in [A] are
positive definite — in particular, if [z]¢ exists — then 2z exists
for each matrix A € [A].

Theorem 6

Let [A] = [A]Y € IR™*™ contain a symmetric and positive de-
finite matrix A and let n < 3. Then [z]¢ exists if and only if
[2]C exists.
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The converse of Theorem 4 does not hold!

Example 4 (Counterexample)
1 [-1,1] 0 O
-1, 2 1 2 oo .
Let [A] = 0 1 5 5 . Then [x]% exists since
0 2 2 16/3
1 0 0 0 \
[-1,1] [1,v2] 0 0
H=1 0 vz 11,32 0 ’

\ 0 [2/v2,2] [0,1] [\/1/3,\/10/3])
while [2]¢ does not exist because of
1 [-1,1] 0O 0

[1,3] 1 >

0
0 O [1,5/3] [0,4/3]
0O O 0 [—4/9, 4]

[U] =
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Theorem 7  (For a variant cf. Frommer 2001)

Let [A] = [A]Y € IR™*™ contain a symmetric positive definite
matrix. If the (undirected) graph of ([A]) is a tree and if it
IS ordered according to the minimum-—degree algorithm, then

the following properties are equivalent.
(i) [z]€ exists.
(i) [z]C¢ exists.
(iii) Each symmetric matrix in [A] is positive definite.

Example 5

Let
2 0 [-1,1]
[A] = 0 2 [=1,1]
[_171] [_171] 2

Each symmetric matrix A € [A] is positive definite, hence [z]¢
exists.
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Theorem 8

If [A] =1+ [-R,R], O<R=R! 0<ay, i=1,...,n, then
[2]¢ exists if and only if p(R) < 1, hence if and only if [A] is
an H—matrix. Thus [2]¢ exists if and only if [z]¢ exists.

Definition 1
Let [A] € IRMX™,
a) Sign matrix S = (sign (mid([a]ij))).
b) Extended sign matrix S’:

S'=85

fork=1:(n—1)

fori=(k+1):n
for j=(k+1):n
if Sfij == 0 then Sf/ij = _S;LkS;ckS;cj :
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Definition 2
a) [A] € IR™*™ is irreducible if |[A]]| is irreducible.

b) [A] € IR"*" is generalized diagonally dominant if there is
a vector x > 0 such that ([A])x > O.

Theorem 9

Let [A] = [A]! € IR™ ™ be irreducible and generalized diago-
nally dominant with 0 < g4, i = 1,...,n. Define S’ as above.
Then [z]¢ exists if and only if [z]¢ exists if and only if [4] is
generalized irreducibly diagonally dominant or the sign condi-
tion

S,"S/
1] 1

/
kSkj — 1
holds for some triple (3,7, k) with k < j < 1.
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Example 6

4 0 [0,2] [-2,0]
0 4 [0,2] [0, 2]

[A] =

Is irreducible and diagonally dominant with

101 -1 101
| o11 1 , | 01
S=1 111 o|7YT] 111
-1 10 1 ~1 1 1

[2]¢ exists by Theorem 9 with (3, 4, k) = (4, 3,2).

1
1
1
1
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