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History of IFIP proposal

• Proposal by IFIP WG 2.5, October 2007 (based on
Kulisch/Kirchner paper)

• Intention: include interval arithmetic in revised IEEE 754
standard

• Discussion during conference at Dagstuhl castle,
Germany, January 2008

• Formation of a new IEEE standardization group on interval
arithmetic, authorized on June 11, 2008

• IEEE 754-2008 standard published on August 29, 2008,
without interval arithmetic

• Revised Kulisch paper sent to all participants of scan 2008
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Floating-point Arithmetic vs. Interval Arithmetic

Concentration on main mathematical properties of interval
arithmetic

Floating point arithmetic:
• Approximation of mathematical results
• Exceptions lead to special values like +∞, −∞, NaN, +0,
−0 (no real numbers)

Interval arithmetic:
• Result is always an enclosure of mathematical results, i.e.

is always exact
• No exceptions can occur (depending on definition of

division by intervals containing zero)
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Interval Standard

Interval arithmetic can be realized via IEEE 754, but this leads
to an unacceptable loss of efficiency.

• Switching of rounding modes is time consuming
• Case distinction for multiplication and division must be

programmed in software
• Difficult to fully use parallelism (multithreading, SSE

instructions) on current processors

With very little extra hardware, interval arithmetic can be made
as fast as floating-point arithmetic.
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Remarks on Floating-Point Numbers

Mathematical spaces:
• IR set of real numbers (conditionally complete, linearly

ordered field)
• IR∗ := IR ∪ {−∞} ∪ {+∞} (a complete lattice)
• F set of floating-point numbers
• F ∗ := F ∪ {−∞} ∪ {+∞}
• −∞ and +∞ are no elements of the field of real numbers
• The same holds for NaN, signed zeros, etc. of IEEE 754

We use the notation 5 , 4 for the directed roundings.
Similarly for the rounded operations.

() denotes open interval bounds, [] denotes closed interval
bounds, e.g. [0,∞) is the interval of all non-negative reals,
including zero, not including ∞.
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Arithmetic for Intervals of Real Numbers

Intervals IIR (subset of the power set IPIR):
set of closed and bounded intervals over the real numbers IR
• Definition and properties well known (provided that zero is

not in the divisor)
• Essential properties: inclusion-isotony and

inclusion-monotonicity
• Under the assumption 0 6∈ divisor for division, the intervals

of IIR are an algebraically closed subset of the power set
IPIR

• In floating-point arithmetic the crucial operation is division
by zero. So we begin our study of extended interval
arithmetic by defining division by an interval that contains
zero.
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Definition of Divison

Division in IIR is defined by∧
A,B∈IIR

A/B := {a/b | a ∈ A ∧ b ∈ B}. (1)

The quotient a/b is defined as the inverse operation of
multiplication, i.e., as the solution of the equation b · x = a
(called backward calculation by Neumaier, reverse operation by
Rump).

Thus (1) can be written in the form∧
A,B∈IIR

A/B := {x | bx = a ∧ a ∈ A ∧ b ∈ B}. (2)

For 0 /∈ B (1) and (2) are equivalent.
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Division by Interval Containing Zero: Case Distinction

For A = [a1, a2] and B = [b1, b2] ∈ IIR with 0 ∈ B the following
eight distinct cases can be set out:

1 0 ∈ A, 0 ∈ B.
2 0 /∈ A, B = [0, 0].
3 a1 ≤ a2 < 0, b1 < b2 = 0.
4 a1 ≤ a2 < 0, b1 < 0 < b2.
5 a1 ≤ a2 < 0, 0 = b1 < b2.
6 0 < a1 ≤ a2, b1 < b2 = 0.
7 0 < a1 ≤ a2, b1 < 0 < b2.
8 0 < a1 ≤ a2, 0 = b1 < b2.
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Division by Interval Containing Zero: Cases 1-2

Case 1: Since every x ∈ IR fulfills the equation 0 · x = 0 we
obtain A/B = IR = (−∞,+∞). Here the parentheses indicate
that the bounds are not included in the set.

Case 2: the set defined by (2) consists of all elements which
fulfill the equation 0 · x = a for a ∈ A. Since 0 /∈ A, there is no
real number which fulfills this equation. Thus A/B is the empty
set, i.e., A/B = ∅.

Cases 3-8: 0 /∈ A also. We have already observed under case 2
that the element 0 in B does not contribute to the solution set.
So it can be excluded without changing the set A/B.
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Division by Interval Containing Zero: Cases 3-8

So the general rule for computing the set A/B by (2) is to
remove its zero from the interval B and replace it by a small
positive or negative number ε as the case may be.

The resulting set is denoted by B′ and represented in column 4
of Table 1.

With this B′ the solution set A/B′ can now easily be computed
by applying the rules for closed and bounded real intervals.

The results are shown in column 5 of Table 1. Now the desired
result A/B as defined by (2) is obtained if in column 5 ε tends to
zero.

Thus in the cases 3 to 8 the results are obtained by the limit
process A/B = lim

ε→0
A/B′.
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Table 1: Division by Interval Containing Zero

case A = [a1, a2] B = [b1, b2] B′ A/B′ A/B
1 0 ∈ A 0 ∈ B (−∞, +∞)
2 0 /∈ A B = [0, 0] ∅
3 a2 < 0 b1 < b2 = 0 [b1, (−ε)] [a2/b1, a1/(−ε)] [a2/b1, +∞)
4 a2 < 0 b1 < 0 < b2 [b1, (−ε)] [a2/b1, a1/(−ε)] (−∞, a2/b2]

∪ [ε, b2] ∪ [a1/ε, a2/b2] ∪ [a2/b1, +∞)
5 a2 < 0 0 = b1 < b2 [ε, b2] [a1/ε, a2/b2] (−∞, a2/b2]
6 a1 > 0 b1 < b2 = 0 [b1, (−ε)] [a2/(−ε), a1/b1] (−∞, a1/b1]
7 a1 > 0 b1 < 0 < b2 [b1, (−ε)] [a2/(−ε), a1/b1] (−∞, a1/b1]

∪ [ε, b2] ∪ [a1/b2, a2/ε] ∪ [a1/b2, +∞)
8 a1 > 0 0 = b1 < b2 [ε, b2] [a1/b2, a2/ε] [a1/b2, +∞)

Table: The eight cases of interval division A/B, with A, B ∈ IIR, and
0 ∈ B.
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Division by Interval Containing Zero: Special Cases

The operands A and B of the division A/B in Table 1 are
intervals of IIR.
The results of the division shown in the last column, however,
are no longer intervals of IIR.
The result is now an element of the power set IPIR.
With the exception of case 2 the result is now a set which
stretches continuously to −∞ or +∞ or both.

In two cases (rows 4 and 7 in Table 1) the result consists of the
union of two distinct sets of the form (−∞, c2] ∪ [c1,+∞).
These cases can easily be identified by the signs of the bounds
of the divisor before the division is executed.
For interval multiplication and division a case selection has to
be done before the operations are performed anyhow, see
[Kirchner].
In the two cases (rows 4 and 7 in Table 1) the sign of b1 is
negative and the sign of b2 is positive.
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Division by Interval Containing Zero: Cases 4 and 7

Division by zero does not contribute to the solution set.

Therefore, the set b1 < 0 < b2 devolves into the two distinct
sets [b1, 0) and (0, b2] and division by the set b1 < 0 < b2
actually means two divisions.

The result of the two divisions consists of the two distinct sets
shown in rows 4 and 7 of Table 1.

It is highly desirable to perform the two divisions sequentially.
Then the two cases (rows 4 and 7) of Table 1 where an
operation delivers two distinct results can be eliminated.
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Table 2: Exclusion of Critical Cases

case A = [a1, a2] B = [b1, b2] A/B
1 0 ∈ A 0 ∈ B (−∞,+∞)
2 0 /∈ A B = [0, 0] ∅
3 a2 < 0 b1 < b2 = 0 [a2/b1,+∞)
4 a2 < 0 0 = b1 < b2 (−∞, a2/b2]
5 a1 > 0 b1 < b2 = 0 (−∞, a1/b1]
6 a1 > 0 0 = b1 < b2 [a1/b2,+∞)

Table: The six cases of interval division with A, B ∈ IIR, and 0 ∈ B.
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Extended Intervals

Thus only four kinds of result come from division by an interval
of IIR which contains zero:

∅, (−∞, a], [b,+∞), and (−∞,+∞). (3)

We call such elements extended intervals. The union of the set
of closed and bounded intervals of IIR with the set of extended
intervals is denoted by (IIR). The elements of the set (IIR) are
themselves simply called intervals. (IIR) is the set of closed
intervals of IR. (A subset of IR is called closed if its complement
is open.)

Intervals of IIR and of (IIR) are sets of real numbers. −∞ and
+∞ are not elements of these intervals.
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Definition of Floating-Point Interval Operations

On the computer, arithmetic in IIR is approximated by an
arithmetic in IF .

IF is the set of closed and bounded intervals with bounds of F .
An interval of IF represents the continuous set of real numbers
between the floating-point bounds.

Arithmetic operations in IF are defined by those in IIR with the
lower bound of the result rounded downwards and the upper
bound rounded upwards.
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Table 3: The 6 Cases for Floating-Point Intervals

case A = [a1, a2] B = [b1, b2] A ♦/ B
1 0 ∈ A 0 ∈ B (−∞,+∞)
2 0 /∈ A B = [0, 0] ∅
3 a2 < 0 b1 < b2 = 0 [a2 5/ b1,+∞)

4 a2 < 0 0 = b1 < b2 (−∞, a2 4/ b2]

5 a1 > 0 b1 < b2 = 0 (−∞, a1 4/ b1]

6 a1 > 0 0 = b1 < b2 [a1 5/ b2,+∞)

Table: The six cases of interval division with A, B ∈ IF , and 0 ∈ B.
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Table 4: The 6 Cases in Another Layout

B = [0, 0] b1 < b2 = 0 0 = b1 < b2

a2 < 0 ∅ [a2 5/ b1,+∞) (−∞, a2 4/ b2]
a1 ≤ 0 ≤ a2 (−∞,+∞) (−∞,+∞) (−∞,+∞)

0 < a1 ∅ (−∞, a1 4/ b1] [a1 5/ b2,+∞)

Table: The result of the interval division with A, B ∈ IF , and 0 ∈ B.

We explicitly stress that the symbols −∞, +∞ are used here
only to represent the resulting sets. These symbols are not
elements of these sets.
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Introduction of Extended Intervals

Table 3 and Table 4 show that division by an interval of IF
which contains zero on the computer also leads to extended
intervals as shown in (3) with a, b ∈ F .

The union of the set of closed and bounded intervals of IF with
such extended intervals is denoted by (IF ).

(IF ) is the set of closed intervals of real numbers where all
finite bounds are elements of F .

Except for the empty set, extended intervals also represent
continuous sets of real numbers.
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Flag and Handling Routine

Division by an interval [b1, b2] with b1 < 0 < b2 actually
consists of two divisions by the distinct sets [b1, 0) and (0, b2]
the result of which again consists of two distinct sets.

In the user’s program, however, the two divisions appear as one
single operation, as division by an interval [b1, b2] with
b1 < 0 < b2.

A solution to the problem would be for the computer to provide
a flag for distinct intervals.

The situation occurs if the divisor is an interval that contains
zero as an interior point. In this case the flag would be raised
and signaled to the user. The user may then apply a routine of
his choice to deal with the situation as is appropriate for his
application.
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Options for Handling Distinct Intervals

A handling routine could perform one of the following
operations:

• modify the operands and recompute,
• continue the computation with one of the sets and ignore

the other,
• put one of the sets on a list and continue the computation

with the other one,
• return the entire set of real numbers (−∞,+∞) as result

and continue the computation,
• stop computing,
• alternative approach: return an improper interval [c1, c2]

where the left hand bound is higher than the right hand
bound c1 > c2, this represents the two distinct sets
(−∞, c2] and [c1,+∞),

• any other action.
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Solution by Parallelization

A somewhat natural solution would be to continue the
computation on different processors, one for each interval.

But the situation can occur repeatedly. How many processors
would we need? Future multicore units will provide a large
number of processors. They will suffice for quite a while.

A similar situation occurs in global optimization using
subdivision. After a certain test several candidates may be left
for further investigation.
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Arithmetic for Extended Intervals

On the computer, arithmetic in (IF ) has to be provided.
Threfore, we skip the arithmetic in (IIR), which is similar.

First of all any operation with the empty set is again defined to
be the empty set.

The general procedure for defining all other operations follows a
continuity principle. Bounds like −∞ and +∞ in the operands A
and B are replaced by a very large negative number (−Ω) and
a very large positive number (+Ω) respectively. Then the basic
rules for the arithmetic operations in IIR and IF are applied. In
the following tables these rules are repeated and printed in bold
letters. In the resulting formulas a very large negative number
is then shifted to −∞ and a very large positive number to +∞.
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Simplification of Formulas

As a short cut for obtaining the resulting rules very simple and
well established rules of real analysis like
• ∞∗ x = ∞ for x > 0,
• ∞∗ x = −∞ for x < 0,
• x/∞ = x/−∞ = 0,
• ∞∗∞ = ∞,
• (−∞) ∗∞ = −∞

can be applied together with variants obtained by applying the
sign rules and the law of commutativity.
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Two Special Cases

Two situations have to be treated separately. These are the
cases shown in rows 1 and 2 of Table 1.

If 0 ∈ A and 0 ∈ B (row 1 of Table 1), the result consists of all
the real numbers, i.e., A/B = (−∞,+∞). This applies to rows
2, 5, 6 and 8 of Table 9.

If 0 /∈ A and B = [0, 0] (row 2 of Table 1), the result of the
division is the empty set, i.e., A/B = ∅. This applies to rows 1,
3, 4 and 7 of column 1 of Table 9.
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Algebraically Closed (After Splitting)

In summary it can be said that after splitting an interval [b1, b2]
with b1 < 0 < b2 into two distinct intervals [b1, 0) and (0, b2] the
result of arithmetic operations for intervals of (IF ) always leads
to intervals of (IF ) again.
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Table 5: Addition

Addition (−∞, b2] [b1, b2] [b1,+∞) (−∞,+∞)

(−∞, a2] (−∞, a2 4+ b2] (−∞, a2 4+ b2] (−∞,+∞) (−∞,+∞)

[a1, a2] (−∞, a2 4+ b2] [a1 5+ b1, a2 4+ b2] [a1 5+ b1,+∞) (−∞,+∞)

[a1,+∞) (−∞,+∞) [a1 5+ b1,+∞) [a1 5+ b1,+∞) (−∞,+∞)
(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table: Addition of extended intervals on the computer.
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Table 6: Subtraction

Subtraction (−∞, b2] [b1, b2] [b1,+∞) (−∞,+∞)

(−∞, a2] (−∞,+∞) (−∞, a2 4− b1] (−∞, a2 4− b1] (−∞,+∞)

[a1, a2] [a1 5− b2,+∞) [a1 5− b2, a2 4− b1] (−∞, a2 4− b1] (−∞,+∞)

[a1,+∞) [a1 5− b2,+∞) [a1 5− b2,+∞) (−∞,+∞) (−∞,+∞)
(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table: Subtraction of extended intervals on the computer.
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Table 7: Multiplication

[b1, b2] [b1, b2] [b1, b2] (−∞, b2] (−∞, b2] [b1, +∞) [b1, +∞)
Multiplication b2 ≤ 0 b1 < 0 < b2 b1 ≥ 0 [0, 0] b2 ≤ 0 b2 ≥ 0 b1 ≤ 0 b1 ≥ 0 (−∞, +∞)

[a1, a2], a2 ≤ 0 [a2 5· b2, a1 4· b1] [a1 5· b2, a1 4· b1] [a1 5· b2, a2 4· b1] [0, 0] [a2 5· b2, +∞) [a1 5· b2, +∞) (−∞, a1 4· b1] (−∞, a2 4· b1] (−∞, +∞)

a1 < 0 < a2 [a2 5· b1, a1 4· b1] [min(a1 5· b2, a2 5· b1), [a1 5· b2, a2 4· b2] [0, 0] (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞)

max(a1 4· b1, a2 4· b2)]

[a1, a2], a1 ≥ 0 [a2 5· b1, a1 4· b2] [a2 5· b1, a2 4· b2] [a1 5· b1, a2 4· b2] [0, 0] (−∞, a1 4· b2] (−∞, a2 4· b2] [a2 5· b1, +∞) [a1 5· b1, +∞) (−∞, +∞)
[0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

(−∞, a2], a2 ≤ 0 [a2 5· b2, +∞) (−∞, +∞) (−∞, a2 4· b1] [0, 0] [a2 5· b2, +∞) (−∞, +∞) (−∞, +∞) (−∞, a2 4· b1] (−∞, +∞)

(−∞, a2], a2 ≥ 0 [a2 5· b1, +∞) (−∞, +∞) (−∞, a2 4· b2] [0, 0] (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞)

[a1, +∞), a1 ≤ 0 (−∞, a1 4· b1] (−∞, +∞) [a1 5· b2, +∞) [0, 0] (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞)

[a1, +∞), a1 ≥ 0 (−∞, a1 4· b2] (−∞, +∞) [a1 5· b1, +∞) [0, 0] (−∞, a1 4· b2] (−∞, +∞) (−∞, +∞) [a1 5· b1, +∞) (−∞, +∞)
(−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) [0, 0] (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞)

Table: Multiplication of extended intervals on the computer.
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Table 8: Division by Regular Interval

Division [b1, b2] [b1, b2] (−∞, b2] [b1,+∞)
0 /∈ B b2 < 0 b1 > 0 b2 < 0 b1 > 0
[a1, a2], a2 ≤ 0 [a2 5/ b1, a1 4/ b2] [a1 5/ b1, a2 4/ b2] [0, a1 4/ b2] [a1 5/ b1, 0]

[a1, a2], a1 < 0 < a2 [a2 5/ b2, a1 4/ b2] [a1 5/ b1, a2 4/ b1] [a2 5/ b2, a1 4/ b2] [a1 5/ b1, a2 4/ b1]

[a1, a2], a1 ≥ 0 [a2 5/ b2, a1 4/ b1] [a1 5/ b2, a2 4/ b1] [a2 5/ b2, 0] [0, a2 4/ b1]
[0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

(−∞, a2], a2 ≤ 0 [a2 5/ b1,+∞) (−∞, a2 4/ b2] [0,+∞) (−∞, 0]

(−∞, a2], a2 ≥ 0 [a2 5/ b2,+∞) (−∞, a2 4/ b1] [a2 5/ b2,+∞) (−∞, a2 4/ b1]

[a1,+∞), a1 ≤ 0 (−∞, a1 4/ b2] [a1 5/ b1,+∞) (−∞, a1 4/ b2] [a1 5/ b1,+∞)

[a1,+∞), a1 ≥ 0 (−∞, a1 4/ b1] [a1 5/ b2,+∞) (−∞, 0] [0,+∞)
(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table: Division of extended intervals with 0 6∈ B on the computer.
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Table 9: Division by Interval Containing Zero

Division B = [b1, b2] [b1, b2] (−∞, b2] [b1,+∞)
0 ∈ B [0, 0] b1 < b2 = 0 0 = b1 < b2 b2 = 0 b1 = 0 (−∞,+∞)

[a1, a2], a2 < 0 ∅ [a2 5/ b1,+∞) (−∞, a2 4/ b2] [0,+∞) (−∞, 0] (−∞,+∞)
[a1, a2], a1 ≤ 0 ≤ a2 (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

[a1, a2], a1 > 0 ∅ (−∞, a1 4/ b1] [a1 5/ b2,+∞) (−∞, 0] [0,+∞) (−∞,+∞)

(−∞, a2], a2 < 0 ∅ [a2 5/ b1,+∞) (−∞, a2 4/ b2] [0,+∞) (−∞, 0] (−∞,+∞)
(−∞, a2], a2 > 0 (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[a1,+∞), a1 < 0 (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

[a1,+∞), a1 > 0 ∅ (−∞, a1 4/ b1] [a1 5/ b2,+∞) (−∞, 0] [0,+∞) (−∞,+∞)
(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table: Division of extended intervals with 0 ∈ B on the computer.
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Simplification of Tables 5-9

On the computer actually only the basic rules for addition,
subtraction, multiplication, and division for closed and bounded
intervals of IF including division by an interval that includes
zero need to be provided.

The remaining rules shown in the tables can automatically be
produced out of these basic rules by the computer itself if a few
well established rules for computing with −∞ and +∞ are
formally applied. With x ∈ F these rules are

∞+ x = ∞, −∞+ x = −∞,
−∞+ (−∞) = (−∞) · ∞ = −∞, ∞+∞ = ∞ ·∞ = ∞,
∞ · x = ∞ for x > 0, ∞ · x = −∞ for x < 0,
x
∞ = x

−∞ = 0,

together with variants obtained by applying the sign rules and
the law of commutativity.
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Multiplication of Zero and Infinity

If in an interval operand a bound is −∞ or +∞ the multiplication
with 0 is performed as if the following rules would hold

0 · (−∞) = 0 · (+∞) = (−∞) · 0 = (+∞) · 0 = 0. (4)

These rules have no meaning otherwise.

We stress that (4) does not define new rules for the
multiplication of 0 with +∞ or −∞. It just describes a short cut
for applying the continuity principle mentioned earlier in this
section.
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Comparisons

Comparisons in (IF ):
• equality,
• less than or equal,
• set inclusion

with bounds in F ∗ := F ∪ {−∞} ∪ {+∞}

Comparisons for the empty set ∅ are defined in a
straightforward way.

{(IF ),≤} is a lattice.
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Lattice Operations

inf (A, B) := [max(a1, b1), min(a2, b2)] or the empty set ∅,

sup(A, B) := [min(a1, b1), max(a2, b2)].

The intersection of an interval with the empty set is the empty
set. The interval hull with the empty set is the other operand.

{(IF ),⊆} is also a lattice.
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Evaluation of Functions

Interval evaluation of real functions fits smoothly into complete
interval arithmetic as developed in the previous sections. Let f
be a function and Df its domain of definition. For an interval
X ⊆ Df , the range f (X ) of f is defined as the set of the
function’s values for all x ∈ X :

f (X ) := {f (x)|x ∈ X}. (5)

A function f (x) = a/(x − b) with Df = IR \ {b} is sometimes
called singular or discontinuous at x = b. Both descriptions are
meaningless in a strict mathematical sense. Since x = b is not
of the domain of f , the function cannot have any property at
x = b.
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Examples with Singular Points

In this strict sense a division 2/[b1, b2] by an interval [b1, b2]
that contains zero as an interior point, b1 < 0 < b2, means:
2/([b1, 0) ∪ (0, b2]) = 2/[b1, 0) ∪ 2/(0, b2] =
(−∞, 2/b1] ∪ [2/b2,+∞).

We give two examples:

f (x) = 4/(x − 2)2, Df = IR \ {2}, X = [1, 4],
f ([1, 2) ∪ (2, 4]) = f ([1, 2)) ∪ f ((2, 4]) = [4,+∞) ∪ [1,+∞) =
[1,+∞).

g(x) = 2/(x − 2), Dg = IR \ {2}, X = [1, 3],
g([1, 2) ∪ (2, 3]) = g([1, 2)) ∪ g((2, 3]) = (−∞,−2] ∪ [2,+∞),

Here the flag distinct intervals should be raised and signaled to
the user. The user may then choose a routine to apply which is
appropriate for the application.
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Alternative Definition

It has been suggested in the literature that the entire set of real
numbers (−∞,+∞) be returned as result in this case.

However, this may be a large overestimation of the true result
and there are applications (Newton’s method) which need the
accurate answer.

To return the entire set of real numbers is also against a basic
principle of interval arithmetic—to keep the sets as small as
possible. So a standard should have the most accurate answer
returned.

On the computer, interval evaluation of a real function f (x) for
X ⊆ Df should deliver a highly accurate enclosure of the range
f (X ) of the function.
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Evaluation Outside of the Domain

Evaluation of a function f (x) for an interval X with X ∩ Df = ∅,
of course, does not make sense, since f (x) is not defined for
values outside its domain Df .

The empty set ∅ should be delivered and an error message
may be given to the user.
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Evaluation Outside of the Domain

There are, however, applications in interval arithmetic where
information about a function f is useful when X exceeds the
domain Df of f . The interval X may also be the result of
overestimation during an earlier interval computation.

In such cases the range of f can only be computed for the
intersection X ′ := X ∩ Df :

f (X ′) := f (X ∩ Df ) := {f (x)|x ∈ X ∩ Df}. (6)

To prevent the wrong conclusions being drawn, the user must
be informed that the interval X had to be reduced to
X ′ := X ∩ Df to compute the delivered range.

A particular flag for domain overflow may serve this purpose.
An appropriate routine can be chosen and applied if this flag is
raised.
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Examples

l(x) := log(x), Dlog = (0,+∞),
log((0, 2]) = (−∞, log(2)].
But also
log([−5, 2]′) = log((0, 2]) = (−∞, log(2)].
The flag domain overflow should be set. It informs the user that
the function has been evaluated for the intersection
X ′ := X ∩ Df = [−5, 2] ∩ (0,+∞) = (0, 2].

h(x) := sqrt(x), Dsqrt = [0,+∞),
sqrt([1, 4]) = [1, 2],
sqrt([4,+∞)) = [2,+∞).
sqrt([−5,−1]) = ∅, an error message sqrt not defined for
[−5,−1], may be given to the user.
sqrt([−5, 4]′) = sqrt([0, 4]) = [0, 2].
The flag domain overflow should be set. It informs the user that
the function has been evaluated for the intersection
X ′ := X ∩ Df = [−5, 4] ∩ [0,+∞) = [0, 4].
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Examples

k(x) := sqrt(x)− 1, Dk = [0,+∞),
k([−4, 1]′) = k([0, 1]) = sqrt([0, 1])− 1 = [−1, 0].
The flag domain overflow should be set. It informs the user that
the function has been evaluated for the intersection
X ′ := X ∩ Df = [−4, 1] ∩ [0,+∞) = [0, 1].
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Dot Product

For interval evaluation of an algorithm in the real number field,
increasing the precision by k digits reduces the error bounds by
b−k [R. E. Moore]

Results can always be guaranteed to a number of correct digits
by using variable precision interval arithmetic [Alefeld, Rump]

Variable length interval arithmetic can be made very fast by an
exact dot product and complete arithmetic [Kulisch].

There is no way to compute a dot product faster than the exact
result. By pipelining, it can be computed in the time the
processor needs to read the data.
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Conclusion

The tremendous progress in computer technology should be
accompanied by extension of the mathematical capacity of the
computer.

A balanced standard for computer arithmetic should require
that the basic components of modern computing be provided
by the computer’s hardware:
• floating-point arithmetic,
• interval arithmetic,
• an exact dot product
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