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Motivation–Physiological Models

• Models can be developed to simulate the dynamics of the human body

– Often “compartment” based

– Unsteady material and/or energy balances

– Lumped or distributed parameter

• Models can be used to investigate physiological processes under

circumstances that would be unsafe or impractical to simulate with physical

experiments

– Pharmacokinetics and drug delivery

– Treatment plans and dosing

– Operation and control policies for devices (e.g. insulin delivery)

• Parameters and initial states in these models may be determined based on

limited empirical investigation, so are not precisely known, but bounds and

imprecise probability distributions may be available

• Need procedure to rigorously propagate the uncertainty to the model outputs
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Example–Diabetes Model

• The Bergman “minimal” model (Bergman et al., 1981) represents the effect of

insulin infusion (U ) and glucose inputs (Gmeal) on blood glucose

concentration (G) in a diabetic patient:

dG

dt
= −p1G − X(G + Gb) +

Gmeal

V1

dX

dt
= −p2X + p3I

dI

dt
= −n(I + Ib) +

U

V1

• I is blood insulin concentration; X is “remote” (effective) insulin concentration

• Given uncertainties in parameters and initial states, what uncertainties result

in G and X?
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Representing Uncertainty: Intervals

• Uncertainty in a parameter or initial state can be bounded by a real interval

X = [a, b] = {x ∈ R | a ≤ x ≤ b}

• An interval provides upper and lower bounds only and gives no information

about the distribution of uncertainties

• An interval vector X = [X1, X2, . . .Xn]T can be thought of as an

n-dimensional rectangle

• Basic interval arithmetic for intervals X and Y is

X op Y = {x op y | x ∈ X, y ∈ Y }

• Interval elementary functions, e.g. exp(X), sin(X), are also available

5



Representing Uncertainty: Intervals

• An interval extension F (X) encloses f(x) for every x ∈ X :

F (X) ⊇ {f(x) | x ∈ X}

• If the function calls an interval-valued variable more than once, direct

substitution (natural interval extension) may lead to overestimation (the

“dependency” problem)

• If an interval is used to enclose (wrap) a nonrectangular set of values, then

overestimation occurs (the “wrapping effect”)

• Repeated applications of such overestimations can quickly lead to the loss of

any meaningful interval enclosure
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Representing Uncertainty: Taylor Models

• Taylor Model Tf = (pf , Rf ): Bounds f(x) over X using a q-th order

Taylor polynomial pf and an interval remainder bound Rf

• One way to obtain Tf is directly from Taylor’s theorem

• Can also compute Taylor models by using Taylor model (TM) operations

(Makino and Berz, 1996)

– Beginning with Taylor models of simple functions (e.g., constant, identity)

and using TM operations, one can compute the TM of a complicated

function

• Compared to other methods, Taylor models often yield sharper bounds for

modest to complicated functional dependencies
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Representing Uncertainty: CDF’s

• For a quantity x, the cumulative distribution function (CDF) Fx(z) gives the

probability that x ≤ z

• Example: in the CDF below, P (x ≤ 0) = 0.5
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Representing Uncertainty: P-boxes

• A probability box (p-box) bounds a set of probability distributions, much like

an interval bounds a set of real numbers

• A p-box is the set of all CDFs enclosed by two bounding functions F (z) and

G(z):

(F, G) = {H(z) | F (z) ≥ H(z) ≥ G(z) ∀z ∈ R}

• P-boxes may be formulated from

– Known distributions with uncertain parameters (e.g., mean, standard

deviation)

– Any bounds consistent with available information

• Arithmetic operations can be defined in a manner analogous to intervals

• P-box operations are implemented in RAMAS Risk Calc (Ferson, 2002). We

also use a “bare bones” Matlab implementation.
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Representing Uncertainty: P-boxes

• P-boxes provide an interval of probabilities for a corresponding value or an

interval of values for a corresponding probability

−0.5 −0.3 −0.1 0.1 0.3 0.5
0

10

20

30

40

50

60

70

80

90

100

z

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty
 (

%
)

−0.5 −0.3 −0.1 0.1 0.3 0.5
0

10

20

30

40

50

60

70

80

90

100

z

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty
 (

%
)

10



Representing Uncertainty: P-boxes

• Example of a p-box from a known distribution and uncertain parameter:

– A “uniform” p-box obtained from a uniform distribution with uncertain outer

bounds [−0.4,−0.32] and [0.32, 0.4] and fixed midpoint 0

– This p-box can be enclosed in the interval [−0.4, 0.4]
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Representing Uncertainty: P-boxes

• Another example of a p-box from a known distribution / uncertain parameter:

– A “normal” p-box with bounds obtained from a truncated normal

distribution with fixed mean 0 and interval standard deviation [0.10, 0.15]

– This p-box can be enclosed in the interval [−0.3947, 0.3947]
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Problem Statement

• We consider physiological models that can be formulated as ODE initial value

problems,

dy

dt
= f(y, θ), y(t0) = y0 ∈ Y0, θ ∈ Θ,

in which at least one of the initial states y0 or one of the time-invariant

parameters θ is uncertain (contained in Y0 and/or Θ)

• There may be information about the distribution of this uncertainty that can be

represented by a p-box

• Goal 1: Obtain a rigorous, verified enclosure of all possible solutions to this

uncertain, parametric IVP over a time horizon of interest

• Goal 2: Obtain rigorous, verified bounds (p-boxes) on the probability

distribution of the states at times of interest
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Solution Procedure–Goal 1

• Goal 1: Obtain a rigorous, verified enclosure of all possible solutions to this

uncertain, parameter IVP over a time horizon of interest

• Use a method for verified (validated) solution of IVP

– Guarantees there exists a unique solution y in the interval [t0, tf ], for

each θ ∈ Θ and y0 ∈ Y0

– At time step j, computes an interval Yj that encloses all solutions of the

ODEs system at tj for θ ∈ Θ and y0 ∈ Y0

• Tools are available – AWA, VNODE, COSY VI, ValEncIA-IVP, VSPODE, etc.
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Summary of VSPODE

• Use interval Taylor series to represent dependence on time

• Use Taylor models to represent dependence on uncertain quantities

(parameters and initial states)

• Assuming Yj is known, then

– Phase 1: Compute a coarse enclosure Ỹj and prove existence and

uniqueness using fixed point iteration with Picard operator and high-order

interval Taylor series (as in VNODE)

– Phase 2: Refine the coarse enclosure to obtain Yj+1 using Taylor models

in terms of the uncertain parameters and initial states

• Implemented by Lin and Stadtherr (2007)
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Phase 2 of VSPODE

• Represent uncertain initial states and parameters using Taylor model identity

functions Ty0 and Tθ

• Bound the interval Taylor series coefficients f [i] by Taylor models Tf [i]

– Use mean value theorem

– Evaluate using Taylor model operations

• Reduce “wrapping effect” by using a new type of Taylor model

Tyj
= T̂yj

+ Pj , where Pj = {Ajvj | vj ∈ Vj}

• The result: a Taylor model Tyj+1 in terms of the initial states y0 and

parameters θ; then Yj+1 = B(Tyj+1) (interval bound on Tyj+1 )
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Solution Strategy–Goal 2

• Goal 2: Obtain rigorous, verified bounds (p-boxes) on the probability

distribution of the states at times of interest

• For a time of interest tj (end of j-th time step), VSPODE has computed a

Taylor model representation Tyj
= Tyj

(y0, θ) of the state variables as a

function of the initial states y0 and parameters θ

• This Taylor model is valid for all y0 ∈ Y0 and θ ∈ Θ

• Substitute distributions (p-boxes) for y0 and θ into Tyj
= Tyj

(y0, θ) and

use p-box arithmetic to compute p-boxes of state variables yj = y(tj)

• To reduce overestimation in p-box arithmetic, subinterval reconstitution (SIR)

can be used (Ferson and Hajagos, 2004).
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Example: Diabetes Model

• The Bergman “minimal” model (Bergman et al., 1981) represents the effect of

insulin infusion (U ) and glucose inputs (Gmeal) on blood glucose

concentration (G) in a diabetic patient:

dG

dt
= −p1G − X(G + Gb) +

Gmeal

V1

dX

dt
= −p2X + p3I

dI

dt
= −n(I + Ib) +

U

V1

• I is blood insulin concentration; X is “remote” (effective) insulin concentration

• Consider “open loop” simulation of effect on G and X of a “slow” meal

(Gmeal = 100 g/hr)

• Uncertain initial states G(0) and X(0)
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Example: Diabetes Model

• Parameters (Lynch and Bequette, 2001) and initial conditions:

Value Units Value Units

p1 0 min−1 V1 12 L

p2 0.025 min−1 n 5/54 min−1

p3 0.000013 mU/L Gmeal 9.259 mmol/min

Gb 4.5 mmol/L U 50/3 mU/min

Ib 4.5 mU/L I(0) 0.02 mmol/L

G(0) [4.5, 4.6] mmol/L X(0) [0.05, 0.075] mmol/L

• Assume imprecise uniform distributions for G(0) and X(0)
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Example: Diabetes Model

• P-box representation of uncertain initial states G(0) and X(0)
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Example: Diabetes Model

• VSPODE enclosures of G(t) and X(t) over t = [0, 50] min
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Example: Diabetes Model

• Comparison of VSPODE bounds to Monte Carlo simulations
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Example: Diabetes Model

• Probability distributions (p-boxes) for G and X at t = 50 min
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Example: Diabetes Model

• Comparison with Monte Carlo simulations: 500 simulations, each with

probability distributions for G(0) and X(0) sampled from the input p-boxes;

each simulation consisting of 10000 trials
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Example: Long-term Starvation Model

• After depletion of glucose reserves (3-4 days fasting), energy to sustain the

human body comes from fat F (t), protein stored in muscle mass M(t), and

(for brain function) ketone bodies (acetone, AcAc, BHB) K(t)

• From this starting point, balance equations can be developed for a

physiological simulation of long-term starvation (Song and Thomas, 2007):

dF

dt
= F

(
−

a

1 + K
−

1

λF

(C + κL0

F + M
+ κ

))

dM

dt
= −

M

λM

(C + κL0

F + M
+ κ

)

dK

dt
=

V aF

1 + K
− b

• All parameters taken from literature studies, except for κ (effect of body mass

on basal metabolic rate) and b (rate of ketone use by brain)
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Example: Long-term Starvation Model

• Parameters and initial conditions:

Value Units Value Units

a 0.013 kg/d V 0.9 (kg fat)/(kg ketone)

C 772.3 kcal/d F (0) 25 kg

L0 30.4 kg M(0) 43.6 kg

λF 7777.8 kcal/kg K(0) 0.02 kg

λM 1400 kcal/kg

κ [8.22, 13.7] kcal/(kg d) b [0.05, 0.075] kg/d

26



Example: Long-term Starvation Model

• The parameter κ is the proportionality constant accounting for the effect of

body mass on the basal metabolic rate.

– Standard literature value does not apply since it is an average over normal

individuals

– Song and Thomas (2007) assume a normal distribution for κ with mean of

10.96 kcal/(kg d)

– We assume a standard deviation in [0.548, 0.685]

• The parameter b is the rate of ketone body use by the brain

– Song and Thomas (2007) estimate this to be in [0.05, 0.075] and assume

a uniform distribution

– We assume imprecision in bounds, with lower bound in [0.05, 0.0525]

and upper bound in [0.0725, 0.075]
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Example: Long-term Starvation Model

• P-box representation of uncertain parameters κ and b
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Example: Long-term Starvation Model

• VSPODE enclosures of F (t), M(t), K(t) over t = [0, 25] days
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Example: Long-term Starvation Model

• Comparison of VSPODE bounds to Monte Carlo simulations
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Example: Long-term Starvation Model

• Probability distributions (p-boxes) for F , M and K at t = 25 days
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Example: Long-term Starvation Model

• Comparison with Monte Carlo simulations: 500 simulations, each 10000 trials
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Concluding Remarks

• ODE models may be required to simulate physiological phenomena when

physical experimentation is impractical or impossible

• Physiological models incorporate parameters that cannot be precisely known

but are bounded by intervals or probability boxes

• VSPODE (Lin and Stadtherr, 2007) is a powerful tool to propagate interval

uncertainties in initial conditions and parameters through nonlinear ODEs

• Taylor Models can be used to propagate both interval and p-box uncertainties

through a dynamic system
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