Inner and Outer Approximation of Functionals coming from static analysis using Generalized Affine Forms

Eric Goubault and Sylvie Putot

CEA-LIST, MEASI (ModElisation and Analysis of Systems in Interaction)

SCAN 2008, El Paso, TX

Context

Static analysis of programs

- Find outer-approximation of sets of reachable values of variables at some program points
- To ensure absence of runtime errors typically

Example

float x;			
x=[0,1];	[1]	x_1	= [0,1]
while (x<=1) {	[2]	<i>x</i> ₂	$=]-\infty,1] \cap (x_1 \cup x_3)$
x = x-0.5 * x;	[3]	<i>x</i> 3	$= x_2 - 0.5x_2$
}	[4]	<i>x</i> 4	$=$]1, ∞ [$\cap x_2$
(final smallest invariant: $x_2 \in [0,1]$, $x_4 = \emptyset$)			

Proof of good behaviour

- Need for tight and correct outer approximations
 - First part of the talk: How do we find invariant sets? How do we ensure correctness?
 - Based on affine forms concentrate on real values first

But how pessimistic are the results?

- Joint use of inner- and outer-approximations to characterize the quality of analysis results
 - Inner-approximation: sets of values for the variables, that are sure to be reached for some inputs in the specified ranges.
 - (Second part of the talk) Use of affine forms with generalized intervals as coefficients

Affine Arithmetic for real numbers

Originally: Comba, de Figueiredo and Stolfi 1993

• A variable x is represented by an affine form \hat{x} :

$$\hat{x} = x_0 + x_1 \varepsilon_1 + \ldots + x_n \varepsilon_n,$$

where $x_i \in \mathbb{R}$ and ε_i are independent symbolic variables with unknown value in [-1, 1].

- $x_0 \in \mathbb{R}$ is the *central value* of the affine form
- the coefficients $x_i \in \mathbb{R}$ are the *partial deviations*
- the ε_i are the noise symbols

• The sharing of noise symbols between variables expresses *implicit dependency*

On top of that...

We want a notion of union (and intersections - outside the scope of this talk) of affine forms since we want to compute invariant forms of particular dynamical systems (programs).

They form sub-polyhedric relations

Concretization is a center-symmetric convex polytope

$$\hat{x} = 20 - 4\varepsilon_1 + 2\varepsilon_3 + 3\varepsilon_4$$
$$\hat{x} = 10 - 2\varepsilon_4 + \varepsilon_5 - \varepsilon_5$$

$$\dot{v} = 10 - 2\varepsilon_1 + \varepsilon_2 - \varepsilon_4$$

Define...

$$\gamma(\hat{x}) = [\alpha_0^x - \|\hat{x}\|_1, \alpha_0^x + \|\hat{x}\|_1]$$

where $\|\hat{x}\|_1 = \sum_{i=1}^{\infty} |\alpha_i^x|$, (finite, or ℓ_1 -convergence) Also define joint concretisation.

Affine Arithmetic for over-approximation (some functions)

Assignment

of a variable x whose value is given in a range [a, b] at label *i*, introduces a noise symbol ε_i : (a+b) + (b-a)

$$\hat{x} = \frac{(a+b)}{2} + \frac{(b-a)}{2}\varepsilon_i.$$

Addition

$$\hat{x} + \hat{y} = (\alpha_0^x + \alpha_0^y) + (\alpha_1^x + \alpha_1^y)\varepsilon_1 + \ldots + (\alpha_n^x + \alpha_n^y)\varepsilon_n$$

For example, with real (exact) coefficients , f - f = 0.

Multiplication

creates a new noise term (can do better):

$$\hat{x} \times \hat{y} = \alpha_0^x \alpha_0^y + \sum_{i=1}^n (\alpha_i^x \alpha_0^y + \alpha_i^y \alpha_0^x) \varepsilon_i + \left(\sum_{i=1}^n |\alpha_i^x| \cdot |\sum_{i=1}^n |\alpha_i^y| \right) \varepsilon_{n+1}.$$

How do we compute ...?

...as an affine form \hat{z} the union of for instance:

$$\hat{x} = 3 + \varepsilon_1 + 2\varepsilon_2 \hat{y} = 1 - 2\varepsilon_1 + \varepsilon_2$$

Problem

- Easy geometric interpretation of union but difficult to find a good notion of "optimal" affine form representing a union
- Unions are some form of non-linear operations
- Our choice: distinguish a noise symbol ϵ_U for taking care of uncertainties due to unions (and intersections)

・ロト ・回ト ・ヨト ・ヨト

Join operation (see also Goubault/Putot 2008 [4])

Define $z = x \cup y$ by:

$$\begin{cases} \alpha_0^{\mathsf{z}} = \textit{mid}(\gamma(\hat{x}) \cup \gamma(\hat{y})) \\ \alpha_i^{\mathsf{z}} = \operatorname*{argmin}_{\alpha_i^{\mathsf{x}} \land \alpha_i^{\mathsf{y}} \le \alpha \le \alpha_i^{\mathsf{x}} \lor \alpha_i^{\mathsf{y}}} |\alpha|, \; \forall i \ge 1 \\ \beta^{\mathsf{z}} = \sup \gamma(\hat{x}) \cup \gamma(\hat{y}) - \alpha_0^{\mathsf{z}} - \|z\| \end{cases}$$

 Intuitively, we keep in the union the minimal common dependencies, the "rest" being put as a coefficient to ε_U

Meet similar...

Where...("minimal dependency")

$$\underset{u \land v \le \alpha \le u \lor v}{\operatorname{argmin}} |\alpha| = \{ \alpha \in [u \land v, u \lor v], |\alpha| \text{ minimal} \}$$

<ロ> <同> <同> < 回> < 回>

Example - again

 $\begin{aligned} \hat{x} &= 3 + \varepsilon_1 + 2\varepsilon_2 \\ \hat{y} &= 1 - 2\varepsilon_1 + \varepsilon_2 \\ \hat{u} &= \varepsilon_1 + \varepsilon_2 \end{aligned}$

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・ ヨ

Example - again

(Note that $\gamma(\hat{z}) = [-2, 6] = \gamma(\hat{x}) \cup \gamma(\hat{y})$)

(日) (國) (문) (문) (문)

Example of an invariant for a simple dynamical system/program

Consider:

$$\begin{array}{rcl} x_i &=& f(e_i, e_{i-1}, e_{i-2}, x_{i-1}, x_{i-2}) \\ &=& 0.7e_i - 1.3e_{i-1} + 1.1e_{i-2} + 1.4x_{i-1} - 0.7x_{i-2} \end{array}$$

where e_i are independent inputs between 0 and 1.

Invariant set computation

We use Kleene iteration:

Compute

$$\hat{x}_i = \hat{x}_{i-1} \cup f(e_i, e_{i-1}, e_{i-2}, \hat{x}_{i-1}, \hat{x}_{i-2})$$

(in fact, we iterate f a little bit, by a factor k)

・ロト ・同ト ・ヨト ・ヨト

Results

- (k=5) we reach the over-approximation of the enclosure: [-1.6328,3.2995]
- (k=16) we reach [-1.3,2.8244] (in 18 iterations without widening)
- The smallest enclosure is actually [-1.121240...,2.824318...]

Note that this is not limited to independent inputs, or independent initial conditions.

For instance, if all the *inputs over time are equal* to an unknown number between 0 and 1, the final invariant found with k=16 has *concretization* [-0.1008,2.3298].

・ロン ・回と ・ヨン ・ ヨン

Criteria for correctness

Replace concrete variables x_i and functions f by affine forms \hat{x}_i ...?

[1] Range of individual variables

Given expressions $y_1 = e_1(x_1, \ldots, x_n), \ldots y_m = e_m(x_1, \ldots, x_n)$ depending on variables x_1, \ldots, x_n , ensure that $\gamma(\hat{y}_k)$ contains all concrete values y_k for all possible values of the x_j

[2] Joint range, given a fixed set of variables and expressions

Same but for the joint concretisation (as a zonotope) $\gamma(\hat{y}_1,\ldots,\hat{y}_m)$

[3] Future evaluations (or global consistency)

We want that for all expressions f, the range of $\hat{f}(\hat{y}_1, \ldots, \hat{y}_m)$ contains all concrete values $f(y_1, \ldots, y_m)$

Clearly... $[3] \Rightarrow [2] \Rightarrow [1]$

Converse?

Take (example by Kolev 2007)

$$\begin{array}{rcl} \hat{x} &=& 10 + 5\epsilon_1 + 3\epsilon_2 \\ \hat{y} &=& 10 - 2\epsilon_1 + \epsilon_3 \\ \hat{z} &=& 92 + 31\epsilon_1 + 21\epsilon_2 + 2\epsilon_3 + 16\epsilon_4 & {
m Kolev multiplicatio} \end{array}$$

Question:

Is \hat{z} a good model for outer-approximating $\hat{x}\hat{y}$?

・ロン ・回と ・ヨン ・ ヨン

э

Take (example by Kolev 2007)

$$\begin{array}{rcl} \hat{x} &=& 10 + 5\epsilon_1 + 3\epsilon_2 \\ \hat{y} &=& 10 - 2\epsilon_1 + \epsilon_3 \\ \hat{z} &=& 92 + 31\epsilon_1 + 21\epsilon_2 + 2\epsilon_3 + 16\epsilon_4 & {
m Kolev multiplication} \end{array}$$

Question:

Is \hat{z} a good model for outer-approximating $\hat{x}\hat{y}$?

Here

$$\gamma(\hat{z}) = [22, 162]$$

which is a correct range (and optimal) for the multiplication We have criterion [1] (of course, this was designed for it!)

・ロン ・回と ・ヨン ・ ヨン

<ロ> (四) (四) (注) (注) (注) (注)

So we do not have [2]...

・ロト ・回ト ・ヨト ・ヨト

æ

Joint range and future evaluations

...Nor [3] (of course!)...

Consider (Khalil Ghorbal)

$$\hat{t} = -4\hat{x} + 0.8\hat{z} - 79
= -45.4 + 4.8\epsilon_1 + 4.8\epsilon_2 + 1.6\epsilon_3 + 12.8\epsilon_4 \quad \in [-69.4, -21.4]
But for $\epsilon_1 = 0, \ \epsilon_2 = 1 \text{ and } \epsilon_3 = 1,
x = 13, \ y = 11, \ z = 143
so $t = -16.6 > -21.4!$$$$

・ロ・ ・ 日・ ・ ヨ・ ・

3

Joint range and future evaluations

...Nor [3] (of course!)...

Consider (Khalil Ghorbal)

$$\hat{t} = -4\hat{x} + 0.8\hat{z} - 79 = -45.4 + 4.8\epsilon_1 + 4.8\epsilon_2 + 1.6\epsilon_3 + 12.8\epsilon_4 \quad \in [-69.4, -21.4]$$

But for $\epsilon_1 = 0$, $\epsilon_2 = 1$ and $\epsilon_3 = 1$,

$$x = 13, y = 11, z = 143$$

so t = -16.6 > -21.4!

But...

...there are other multiplications for [3] (SDP based, to appear)

Eric Goubault and Sylvie Putot

Inner and outer approximations

Consider...

$$\begin{cases} \hat{x} = \epsilon_{1} \\ \hat{y} = \epsilon_{2} \\ \hat{z} = f(\hat{x}, \hat{y}) = x + y - \epsilon_{4} \\ = \epsilon_{1} + \epsilon_{2} - \epsilon_{4} \\ \in [-3, 3] \end{cases} \begin{cases} \hat{x}' = -\epsilon_{1} \\ \hat{y}' = \frac{1}{2}(\epsilon_{3} + \epsilon_{4}) \\ \hat{z}' = f(\hat{x}', \hat{y}') = x' + y' - \epsilon_{4} \\ = -\epsilon_{1} + \frac{1}{2}(\epsilon_{3} - \epsilon_{4}) \\ \in [-2, 2] \end{cases}$$

Clearly...

The joint concretisations of (\hat{x}, \hat{y}) and of (\hat{x}', \hat{y}') are the same (but with different dependencies), whereas the same future evaluation f does not give the same range on (\hat{x}, \hat{y}) and on (\hat{x}', \hat{y}')

・ロト ・回ト ・ヨト ・ヨト

Partial conclusion

Correctness

- $[3] \Rightarrow [2] \Rightarrow [1]$ but $[1] \Rightarrow [2] \Rightarrow [3]$
- [3] is definitely necessary when functionals to be evaluated are discovered along the way (as in static analysis)

Remark on union

- Partial order relation x̂ ≤ ŷ if all future evaluations using x̂ instead of ŷ have smaller concretisation (can be characterized in a simpler manner see also Goubault/Putot 2008 [4])
- Our union operator is a minimal upper bound (under some conditions) for this order, reflecting some form of optimality under correctness criterion [3]

・ロト ・四ト ・ヨト ・ヨト

Partial conclusion

Correctness

- $[3] \Rightarrow [2] \Rightarrow [1]$ but $[1] \Rightarrow [2] \Rightarrow [3]$
- [3] is definitely necessary when functionals to be evaluated are discovered along the way (as in static analysis)

Remark on union

- Partial order relation x̂ ≤ ŷ if all future evaluations using x̂ instead of ŷ have smaller concretisation (can be characterized in a simpler manner see also Goubault/Putot 2008 [4])
- Our union operator is a minimal upper bound (under some conditions) for this order, reflecting some form of optimality under correctness criterion [3]

What about inner-approximations?

・ロト ・同ト ・ヨト ・ヨト

Principle

- Use more general dependency coefficients
 - $\check{x} = \sum_{i=1}^{n} [a_i, b_i] \varepsilon_i$ (+possibly generalized interval symbols)
 - Generalized intervals : $\mathbf{x} = [\underline{x}, \overline{x}]$, possibly with $\underline{x} \ge \overline{x}$.

First, recap of modal intervals

- dual $\mathbf{x} = \mathbf{x}^* = [\overline{x}, \underline{x}]$ and pro $\mathbf{x} = [min(\underline{x}, \overline{x}), max(\underline{x}, \overline{x})]$.
- **x** is proper (in \mathbb{IR}) if $\underline{x} \leq \overline{x}$, otherwise improper
- Kaucher arithmetic extending classical interval arithmetic
 - For instance same addition
 - But [1,2] * [1,-1] = [1,-1] whereas

$$[1,2] * pro [1,-1] = [2,-2]$$

イロン イロン イヨン イヨン

Modal intervals/Quantifiers (à la Goldsztejn 2005 [1])

Classical over-approximated interval computation

All intervals are proper $(\forall x \in \mathbf{x}) (\exists z \in \mathbf{z}) (f(x) = z).$

• Let $f(x) = x^2 - x$, then $f([2,3]) = [2,3]^2 - [2,3] = [1,7]$ is interpreted as $(\forall x \in [2,3]) (\exists z \in [1,7]) (f(x) = z)$.

Inner-approximated computation

All intervals are improper $(\forall z \in \text{pro } \mathbf{z}) (\exists x \in \text{pro } \mathbf{x}) (f(x) = z).$

- Application scope is limited to expressions with no dependency between sub-expressions
- An inner-approximation of f(x) = x² − x for x ∈ [2,3] cannot be thus computed

・ロン ・四マ ・ヨマー

Inner- and outer-approximations

Example: inner multiplication (using Goldsztejn 2005 [1])

Let \hat{x} and \hat{y} be two affine forms (real coeff.) and $\mathbf{z} = x \times y$

• An inner-approximation is

$$\check{z} = \alpha_0^{\mathsf{x}} \alpha_0^{\mathsf{y}} + \sum_{i=1}^n (\alpha_i^{\mathsf{x}} \alpha_0^{\mathsf{y}} + \alpha_i^{\mathsf{y}} \alpha_0^{\mathsf{x}}) \varepsilon_i + \left(\sum_{j=1}^n (\alpha_i^{\mathsf{x}} \alpha_j^{\mathsf{y}} + \alpha_i^{\mathsf{y}} \alpha_j^{\mathsf{x}}) \varepsilon_j \right) \varepsilon_i$$
• over-approximation of dependencies.

•
$$\alpha_{i}^{z}$$
 contains the tangent $\frac{\partial z}{\partial \varepsilon_{i}}$

An outer-approximation is

$$\hat{z} = \alpha_0^x \alpha_0^y + \sum_{i=1}^n (\alpha_i^x \alpha_0^y + \alpha_i^y \alpha_0^x) \varepsilon_i + \left(\sum_{i=1}^n |\alpha_i^x| \cdot |\sum_{i=1}^n |\alpha_i^y| \right) \varepsilon_{n+1},$$

with a new noise symbol ε_{n+1} : over-approximation by loss of dependency between linear terms and the non linear term.
The purely affine part of the product is the same

Back to the example

Consider

$$f(x) = x^2 - x$$
 when $x \in [2,3]$ (real result [2,6])

We find:

$$ilde{f}^arepsilon(arepsilon_1)=3.75+[1.5,2.5]arepsilon_1$$

$$\begin{split} &\text{Inner-approximating concretization} \\ &3.75 + [1.5, 2.5] [1, -1] = 3.75 + [1.5, -1.5] = [5.25, 2.25] \\ &\text{Outer-approximating concretization} \\ &3.75 + [1.5, 2.5] [-1, 1] = 3.75 + [-2.5, 2.5] = [1.25, 6.25] \end{split}$$

• Affine arithmetic (over-approximation)

$$x^2 - x = [3.75, 4] + 2\varepsilon_1$$
 (concretization [1.75, 6])

・ロト ・同ト ・ヨト ・ヨト

Join

$$\check{z} = \check{x} \cup \check{y} = (\alpha_0^{\mathsf{x}} \cup \alpha_0^{\mathsf{y}}) + (\alpha_1^{\mathsf{x}} \cup \alpha_1^{\mathsf{y}})\varepsilon_1 + \ldots + (\alpha_n^{\mathsf{x}} \cup \alpha_n^{\mathsf{y}})\varepsilon_n.$$

Meet

If for $i \ge 0$, $\alpha_i^x \cap \alpha_i^y \ne \emptyset$, we can define an inner-approximation of the intersection by

$$\check{z} = \check{x} \cap \check{y} = (lpha_{\mathbf{0}}^{\mathsf{x}} \cap lpha_{\mathbf{0}}^{\mathsf{y}}) + (lpha_{\mathbf{1}}^{\mathsf{x}} \cap lpha_{\mathbf{1}}^{\mathsf{y}}) \varepsilon_{1} + \ldots + (lpha_{\mathsf{n}}^{\mathsf{x}} \cap lpha_{\mathsf{n}}^{\mathsf{y}}) \varepsilon_{\mathsf{n}}$$

Otherwise, the result is \perp (possible refinement by propagating instead the constraints induced on the ε_i).

Single inner-approximation versus joint inner-approximation versus future evaluations

Our joint concretization

The joint concretization has an a priori weak meaning

$$\begin{array}{rcl} x_1 &=& 5 + \varepsilon_1 \\ x_2 &=& 2 + \varepsilon_2 \\ x_3 &=& x_1 x_2 \\ &=& 10 + [1,3] \varepsilon_1 + [4,6] \varepsilon_2 \\ & & \underline{[5,15]} \subseteq [4,18] \subseteq \overline{[3,19]} \end{array}$$

 $orall z \in [5, 15], \ \exists \epsilon_1, \ \epsilon_2, \ z = x_1 x_2$

But we can prove...

...that our formulas agree with [1] but also make all future evaluations correct (criterion [3])

Eric Goubault and Sylvie Putot

Inner and outer approximations

Using Goldsztejn/Jaulin 2008 [2] for joint concretization

Technical conditions ensure that both 2-dim boxes are included in the concrete joint range:

$$\begin{pmatrix} x_1 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5+\epsilon_1^*+0\epsilon_2 \\ 10+[1,3]\epsilon_1+[4,6]\epsilon_2^* \end{pmatrix} = \begin{pmatrix} [4,6] \\ [7,13] \end{pmatrix}$$
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 5+\epsilon_1^*+0\epsilon_2 \\ 2+0\epsilon_1+\epsilon_2^* \end{pmatrix} = \begin{pmatrix} [4,6] \\ [1,3] \end{pmatrix}$$

So some surfaces are there inside the joint concretisation... but not possible to characterize a full 3D box inside...

On correctness...

- For inner-approximations in our framework, criterion [2] is intractable in general:
 - for outer-approximations, still correct when losing dependencies
 - for inner-approximations, we have to outer-approximate dependencies
- The more rigid criterion [3] still applies!

We have a proven general inner-/outer- approximation calculus

• Of course, many details omitted ("splitting" for instance)

<ロ> <同> <同> < 回> < 回>

Can it be generalized to Taylor models?

Generalized *perturbed* affine forms

using ϵ_{\cap} symbols?

Floating-point and rounding error estimations

- Existing extension of the abstract domain (NSAD'05, SAS'06) for outer-approximation
- Problematic for inner-approximation

Faster-than-Kleene fixpoint computation

using policy iteration (CAV'05, ESOP'07)

[1] Alexandre Goldsztejn

Modal Intervals Revisited Part II: A Generalized Interval Mean-Value Extension HAL report number hal-00294222

[2] Alexandre Goldsztejn, Luc Jaulin

Inner Approximation of the Range of Vector-Valued Functions Reliable Computing (Springer), 2008

[3] Eric Goubault, Sylvie Putot

Under-Approximations of Computations in Real Numbers Based on Generalized Affine Arithmetic. SAS 2007

[4] Eric Goubault and Sylvie Putot

Perturbated affine arithmetic for invariant computation in numerical program analysis, arXiv:0807.2961, july 2008