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Context

Static analysis of programs

Find outer-approximation
of sets of reachable values
of variables at some
program points

To ensure absence of
runtime errors typically

Example

float x;

x=[0,1]; [1]

while (x<=1) { [2]

x = x-0.5*x; [3]

} [4]

x1 = [0, 1]
x2 = ] −∞, 1] ∩ (x1 ∪ x3)
x3 = x2 − 0.5x2

x4 = ]1,∞[∩x2

(final smallest invariant: x2 ∈ [0, 1], x4 = ∅)
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Motivation for this talk

Proof of good behaviour

Need for tight and correct outer approximations

First part of the talk: How do we find invariant sets? How do
we ensure correctness?
Based on affine forms - concentrate on real values first

But how pessimistic are the results?

Joint use of inner- and outer-approximations to characterize
the quality of analysis results

Inner-approximation: sets of values for the variables, that are
sure to be reached for some inputs in the specified ranges.
(Second part of the talk) Use of affine forms with generalized
intervals as coefficients
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Affine Arithmetic for real numbers

Originally: Comba, de Figueiredo and Stolfi 1993

A variable x is represented by an affine form x̂ :

x̂ = x0 + x1ε1 + . . . + xnεn,

where xi ∈ R and εi are independent symbolic variables with
unknown value in [−1, 1].

x0 ∈ R is the central value of the affine form
the coefficients xi ∈ R are the partial deviations
the εi are the noise symbols

The sharing of noise symbols between variables expresses
implicit dependency

On top of that...

We want a notion of union (and intersections - outside the scope
of this talk) of affine forms since we want to compute invariant
forms of particular dynamical systems (programs).
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They form sub-polyhedric relations

Concretization is a center-symmetric convex polytope

x̂ = 20 − 4ε1 + 2ε3 + 3ε4

ŷ = 10 − 2ε1 + ε2 − ε4

Define...

γ (x̂) = [αx
0 − ‖x̂‖1, α

x
0 + ‖x̂‖1]

where ‖x̂‖1 =
∑∞

i=1 |α
x
i |, (finite, or ℓ1-convergence)

Also define joint concretisation.
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Affine Arithmetic for over-approximation (some functions)

Assignment

of a variable x whose value is given in a range [a, b] at label i ,
introduces a noise symbol εi :

x̂ =
(a + b)

2
+

(b − a)

2
εi .

Addition

x̂ + ŷ = (αx
0 + α

y
0) + (αx

1 + α
y
1)ε1 + . . . + (αx

n + αy
n)εn

For example, with real (exact) coefficients , f − f = 0.

Multiplication

creates a new noise term (can do better):

x̂ × ŷ = αx
0α

y
0 +

n
∑

i=1

(αx
i α

y
0 + α

y
i αx

0)εi +

(

n
∑

i=1

|αx
i |.|

n
∑

i=1

|αy
i |

)

εn+1.
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Interpretation of unions?

How do we compute...?

...as an affine form ẑ the union of for instance:

x̂ = 3 + ε1 + 2ε2

ŷ = 1 − 2ε1 + ε2

Problem

Easy geometric interpretation of union but difficult to find a
good notion of “optimal” affine form representing a union

Unions are some form of non-linear operations

Our choice: distinguish a noise symbol ǫU for taking care of
uncertainties due to unions (and intersections)
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Join operation (see also Goubault/Putot 2008 [4])

Define z = x ∪ y by:















αz
0 = mid(γ(x̂) ∪ γ(ŷ))

αz
i = argmin

α
x
i
∧α

y

i
≤α≤α

x
i
∨α

y

i

|α|, ∀i ≥ 1

βz = sup γ(x̂) ∪ γ(ŷ) − αz
0 − ‖z‖1

Intuitively, we keep in the union the minimal common
dependencies, the “rest” being put as a coefficient to ǫU

Meet similar...

Where...(“minimal dependency”)

argmin
u∧v≤α≤u∨v

|α| = {α ∈ [u ∧ v , u ∨ v ], |α| minimal}
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Example - again

x̂ = 3 + ε1 + 2ε2

ŷ = 1 − 2ε1 + ε2

û = ε1 + ε2
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Example - again

x̂ = 3 + ε1 + 2ε2

ŷ = 1 − 2ε1 + ε2

û = ε1 + ε2

x̂ ∪ ŷ = 2 + ε2 + 3εU

(Note that γ(ẑ) = [−2, 6] = γ(x̂) ∪ γ(ŷ))
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Example of an invariant for a simple dynamical
system/program

Consider:

xi = f (ei , ei−1, ei−2, xi−1, xi−2)
= 0.7ei − 1.3ei−1 + 1.1ei−2 + 1.4xi−1 − 0.7xi−2

where ei are independent inputs between 0 and 1.

Invariant set computation

We use Kleene iteration:
Compute

x̂i = x̂i−1 ∪ f (ei , ei−1, ei−2, x̂i−1, x̂i−2)

(in fact, we iterate f a little bit, by a factor k)
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Invariant set

Results

(k=5) we reach the over-approximation of the enclosure:
[-1.6328,3.2995]

(k=16) we reach [-1.3,2.8244] (in 18 iterations without
widening)

The smallest enclosure is actually [-1.121240...,2.824318...]

Note that this is not limited to independent inputs, or independent
initial conditions.
For instance, if all the inputs over time are equal to an unknown
number between 0 and 1, the final invariant found with k=16 has
concretization [-0.1008,2.3298].
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Criteria for correctness

Replace concrete variables xi and functions f by affine forms x̂i ...?

[1] Range of individual variables

Given expressions y1 = e1(x1, . . . , xn), . . . ym = em(x1, . . . , xn)
depending on variables x1, . . . , xn, ensure that γ(ŷk) contains all
concrete values yk for all possible values of the xj

[2] Joint range, given a fixed set of variables and expressions

Same but for the joint concretisation (as a zonotope) γ(ŷ1, . . . , ŷm)

[3] Future evaluations (or global consistency)

We want that for all expressions f , the range of f̂ (ŷ1, . . . , ŷm)
contains all concrete values f (y1, . . . , ym)

Clearly... [3]⇒[2]⇒[1]

Converse?
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Correctness?

Take (example by Kolev 2007)

x̂ = 10 + 5ǫ1 + 3ǫ2

ŷ = 10 − 2ǫ1 + ǫ3

ẑ = 92 + 31ǫ1 + 21ǫ2 + 2ǫ3 + 16ǫ4 Kolev multiplication

Question:

Is ẑ a good model for outer-approximating x̂ ŷ?
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Correctness?

Take (example by Kolev 2007)

x̂ = 10 + 5ǫ1 + 3ǫ2

ŷ = 10 − 2ǫ1 + ǫ3

ẑ = 92 + 31ǫ1 + 21ǫ2 + 2ǫ3 + 16ǫ4 Kolev multiplication

Question:

Is ẑ a good model for outer-approximating x̂ ŷ?

Here

γ(ẑ) = [22, 162]

which is a correct range (and optimal) for the multiplication
We have criterion [1] (of course, this was designed for it!)
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Joint range
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Joint range

So we do not have [2]...
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Joint range and future evaluations

...Nor [3] (of course!)...

Consider (Khalil Ghorbal)

t̂ = −4x̂ + 0.8ẑ − 79
= −45.4 + 4.8ǫ1 + 4.8ǫ2 + 1.6ǫ3 + 12.8ǫ4 ∈ [−69.4,−21.4]

But for ǫ1 = 0, ǫ2 = 1 and ǫ3 = 1,

x = 13, y = 11, z = 143

so t = −16.6 > −21.4!
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Joint range and future evaluations

...Nor [3] (of course!)...

Consider (Khalil Ghorbal)

t̂ = −4x̂ + 0.8ẑ − 79
= −45.4 + 4.8ǫ1 + 4.8ǫ2 + 1.6ǫ3 + 12.8ǫ4 ∈ [−69.4,−21.4]

But for ǫ1 = 0, ǫ2 = 1 and ǫ3 = 1,

x = 13, y = 11, z = 143

so t = −16.6 > −21.4!

But...

...there are other multiplications for [3] (SDP based, to appear)
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Also...[2] 6⇒[3]...

Consider...























x̂ = ǫ1

ŷ = ǫ2

ẑ = f (x̂ , ŷ) = x + y − ǫ4

= ǫ1 + ǫ2 − ǫ4

∈ [−3, 3]























x̂ ′ = −ǫ1

ŷ ′ = 1
2 (ǫ3 + ǫ4)

ẑ ′ = f (x̂ ′, ŷ ′) = x ′ + y ′ − ǫ4

= −ǫ1 + 1
2 (ǫ3 − ǫ4)

∈ [−2, 2]

Clearly...

The joint concretisations of (x̂ , ŷ) and of (x̂ ′, ŷ ′) are the same (but
with different dependencies), whereas the same future evaluation f
does not give the same range on (x̂ , ŷ) and on (x̂ ′, ŷ ′)
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Partial conclusion

Correctness

[3]⇒[2]⇒[1] but [1]6⇒[2]6⇒[3]

[3] is definitely necessary when functionals to be evaluated are
discovered along the way (as in static analysis)

Remark on union

Partial order relation x̂ � ŷ if all future evaluations using x̂
instead of ŷ have smaller concretisation (can be characterized
in a simpler manner see also Goubault/Putot 2008 [4])

Our union operator is a minimal upper bound (under some
conditions) for this order, reflecting some form of optimality
under correctness criterion [3]
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Partial conclusion

Correctness

[3]⇒[2]⇒[1] but [1]6⇒[2]6⇒[3]

[3] is definitely necessary when functionals to be evaluated are
discovered along the way (as in static analysis)

Remark on union

Partial order relation x̂ � ŷ if all future evaluations using x̂
instead of ŷ have smaller concretisation (can be characterized
in a simpler manner see also Goubault/Putot 2008 [4])

Our union operator is a minimal upper bound (under some
conditions) for this order, reflecting some form of optimality
under correctness criterion [3]

What about inner-approximations?
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Inner-approximations (see also Goubault/Putot 2007 [3])

Principle

Use more general dependency coefficients

x̌ =
∑n

i=1[ai , bi ]εi (+possibly generalized interval symbols)
Generalized intervals : x = [x , x ], possibly with x ≥ x .

First, recap of modal intervals

dual x = x∗ = [x , x ] and pro x = [min(x , x),max(x , x)].

x is proper (in IR) if x ≤ x , otherwise improper

Kaucher arithmetic extending classical interval arithmetic

For instance same addition
But [1, 2] ∗ [1,−1] = [1,−1] whereas
[1, 2] ∗ pro [1,−1] = [2,−2]
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Modal intervals/Quantifiers (à la Goldsztejn 2005 [1])

Classical over-approximated interval computation

All intervals are proper
(∀x ∈ x) (∃z ∈ z) (f (x) = z).

Let f (x) = x2 − x , then f ([2, 3]) = [2, 3]2 − [2, 3] = [1, 7] is
interpreted as (∀x ∈ [2, 3]) (∃z ∈ [1, 7]) (f (x) = z).

Inner-approximated computation

All intervals are improper
(∀z ∈ pro z) (∃x ∈ pro x) (f (x) = z).

Application scope is limited to expressions with no
dependency between sub-expressions

An inner-approximation of f (x) = x2 − x for x ∈ [2, 3] cannot
be thus computed
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Inner- and outer-approximations

Example: inner multiplication (using Goldsztejn 2005 [1])

Let x̂ and ŷ be two affine forms (real coeff.) and z = x × y

An inner-approximation is

ž = αx
0α

y
0 +

n
∑

i=1

(αx
i α

y
0 +α

y
i αx

0)εi +





n
∑

j=1

(αx
i α

y
j + α

y
i αx

j )εj



 εi

over-approximation of dependencies,
α

z
i contains the tangent ∂z

∂εi

An outer-approximation is

ẑ = αx
0α

y
0 +

n
∑

i=1

(αx
i α

y
0 + α

y
i αx

0)εi +

(

n
∑

i=1

|αx
i |.|

n
∑

i=1

|αy
i |

)

εn+1,

with a new noise symbol εn+1 : over-approximation by loss of
dependency between linear terms and the non linear term.
The purely affine part of the product is the same
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Back to the example

Consider

f (x) = x2 − x when x ∈ [2, 3] (real result [2, 6])

We find:

f̃ ε(ε1) = 3.75 + [1.5, 2.5]ε1

Inner-approximating concretization
3.75 + [1.5, 2.5][1,−1] = 3.75 + [1.5,−1.5] = [5.25, 2.25]
Outer-approximating concretization
3.75 + [1.5, 2.5][−1, 1] = 3.75 + [−2.5, 2.5] = [1.25, 6.25]

Affine arithmetic (over-approximation)

x2 − x = [3.75, 4] + 2ε1 (concretization [1.75, 6])
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Join and meet operations

Join

ž = x̌ ∪ y̌ = (αx
0 ∪ α

y
0) + (αx

1 ∪ α
y
1)ε1 + . . . + (αx

n ∪ α
y
n)εn.

Meet

If for i ≥ 0, α
x
i ∩ α

y
i 6= ∅, we can define an inner-approximation of

the intersection by

ž = x̌ ∩ y̌ = (αx
0 ∩ α

y
0) + (αx

1 ∩ α
y
1)ε1 + . . . + (αx

n ∩ α
y
n)εn.

Otherwise, the result is ⊥ (possible refinement by propagating
instead the constraints induced on the εi ).
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Single inner-approximation versus joint inner-approximation
versus future evaluations

Our joint concretization

The joint concretization has an a priori weak meaning

x1 = 5 + ε1

x2 = 2 + ε2

x3 = x1x2

= 10 + [1, 3]ε1 + [4, 6]ε2

[5, 15] ⊆ [4, 18] ⊆ [3, 19]

.

∀z ∈ [5, 15], ∃ǫ1, ǫ2,
z = x1x2

But we can prove...

...that our formulas agree with [1] but also make all future
evaluations correct (criterion [3])
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Joint inner range?

Using Goldsztejn/Jaulin 2008 [2] for joint concretization

Technical conditions ensure that both 2-dim boxes are included in
the concrete joint range:

(

x1

x3

)

=

(

5 + ǫ∗1 + 0ǫ2

10 + [1, 3]ǫ1 + [4, 6]ǫ∗2

)

=

(

[4, 6]
[7, 13]

)

(

x1

x2

)

=

(

5 + ǫ∗1 + 0ǫ2

2 + 0ǫ1 + ǫ∗2

)

=

(

[4, 6]
[1, 3]

)

So some surfaces are there inside the joint concretisation... but not
possible to characterize a full 3D box inside...
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Final conclusion

On correctness...

For inner-approximations in our framework, criterion [2] is
intractable in general:

for outer-approximations, still correct when losing dependencies
for inner-approximations, we have to outer-approximate
dependencies

The more rigid criterion [3] still applies!

We have a proven general inner-/outer- approximation calculus

Of course, many details omitted (“splitting” for instance)
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Perspectives

Can it be generalized to Taylor models?

Generalized perturbed affine forms

using ǫ∩ symbols?

Floating-point and rounding error estimations

Existing extension of the abstract domain (NSAD’05, SAS’06)
for outer-approximation

Problematic for inner-approximation

Faster-than-Kleene fixpoint computation

using policy iteration (CAV’05, ESOP’07)
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