Interval arithmetic on the Cell processor

Stef Graillat ~ Jean-Luc Lamotte Siegfried M. Rump
Svetoslav Markov
LIP6/PEQUAN, P. and M. Curie University, Paris
Institute for Reliable Computing, Hamburg University of Technology

Institute of Mathematics and Computer Science, Bulgarian. Academy of Sciences

13th GAMM - IMACS International Symposium on Scientific
Computing, Computer Arithmetic and Verified Numerical
Computations SCAN’08

El Paso, Texas, USA, September 29 - October 3, 2008

Overview

The Cell processor

Interval Arithmetic on Cell processor

Conclusions

The Cell processor

SPE

|SXU||SXU||SXU||SXU||SXU||SXU||SXU‘|SXU|

memmmna-

ON-chip coherent bus (up to 96 bytes per cycle) i

L2 PP Memory Bus interface
controller controller
Power
core Dual Rambus Rambus
H XDR FlexiO

SP > 200 GFlops, DP=15 Gflops, 25GB/s memory BW, 300 GB/s EIB

£
5
@
0w
a
(%)
2
o
o
=
=]
c
w
o
=
&
8
=
T
o
2
[
D
[&]

Synergistic Processing Element SPE (1/2)

The SPE is a small processor with a vectorial unit.
» small memory (256 KB) for instructions and data, named
“local store” (LS)
> 128 registers of 128 bits
» 1 SPU “Synergistic Processing Unit"

> 4 units for single precision computation
» 1 unit for double precision computation

» MFC “Memory Flow Controller” which manages memory
access through DMA

Synergistic Processing Element SPE (2/2)

128-bit registers :
> 16 integers of 8 bit,
> 8 integers of 16 bit,
» 4 integers of 32 bit,
» 4 single precision floating point numbers,
» 2 double precision floating point numbers.
The SIMD processor is based on FMA and is fully pipelined in SP :

Peak performance SP : 4 x 2 x 3.2 = 25.6GFLOPs
Not fully pipelined in double precision :

Peak performance in DP : 2 x 2 x 3.2/7 = 1.8GFLOPs

PPE SPE1 SPE: SPES SPET 1CIF
_'-!aJmp E #mp Ramg Ramyj amg
-—y
10 "
~ I - -
Controler) Cantrallar| Controdlen) Cantralkr Caniraliar| Controler
T— Data T
Cardralkar| Cantrallar| Controdler] Cankraliar Contraller| Controler
Ramp Ramp am| Ramp T MY
5 4 3 2 1 o
BIF/
MIC SPED SPEZ SPE4 SPES \GIFo
i —_— i -
Rl.ngO Rl.ng1 s
Ring2 ——~ Rings ~———
] =] =

_ Copyright

DA

Parallelism on Cell

3 levels of parallelism :

1. processes run on Cell processors, exchange with a MPI library,

2. Data distribution and communication on the 8 SPE,
ALF, Dacs

POSX thread, CELL thread,

mailing box, exchange through DMA

data need to be aligned on quadword

double buffering technique

3. inside a thread

» only 256 KB
» Altivec programming
» code and data dependencies : not to break the SIMD pipeline

v

vV vy vVvYy

The performance price on SPE

No division
1/x and 1/4/x : only the 12 first bits are exact.

SPU float arithmetic is not IEEE compliant :
» only rounding mode to zero (truncation).

» The highest exponent (128) is used not for Infinity or NaN,
but is used to extend the range of the floating point.

» Inf and NaN are not recognized by arithmetic operations.

» Overflow results saturate to the largest representable positive
or negative values, rather than producing +/-1EEE Infinity.

» No denormalized results : +0 instead.

The performance price

SPU double arithmetic is IEEE compliant except :
» FP trapping is not supported.
» Denormalized operands are treated as 0.
» NaN results are always the default QNaN (Quiet NaN)

Reliable computing on Cell processor

» difficult to implement interval arithmetic.

» possible to “emulate” a rounding mode toward +oo
if r € R non-negative, flo(r) < r < succ(flo(r))
and

succ(f) = max{flo((1 + 2u)f),flo(f +u)}.
where u is the relative rounding error and u the underflow unit
On the Cell processor, no underflow

> succ(f) =flo((1+2u)f)if f >0
> 2uu Liff=0

Interval with a rounding mode toward zero

Three representations :
» endpoint
» center-radius

> leftpoint-diameter

Endpoint representation — addition

Let A= [ainf7 asup] , B = [binfa bsup] and C = [Cinfa Csup] be three
intervals, C = A+ B is defined by :

Let ® and ® be the floating point addition and multiplication with
rounding towoard zero.

—succ(|ajnf @ binr|) if (@inr © binf) <0
Cinf = X Ainf © binf if (@jnr @ binr) >0
—3uu™! if (@inf @ binr) =0

succ(asup S bsup) if (asup 2 bsup) >0
Csup = jnf D binr if (asup S bsup) <0
Tuu? if (asup D bsyp) =0

Endpoint representation — multiplication

X = min(ainf @ binf, ainf @ bsupa Asup & binf, Asup & bsup)
y = max(ainf & binf> Ainf & bsupa asup & binf7 asup & bsup)

C = A x B is defined by :

—succ(|x]) ifx<0

Cinf = —%gu_l ifx=0
X else

succ(y) ify >0

Csup = %gu_l ify=0

y ify <0

Center-radius — addition

Let A=[a,a] , B=[b, 5] and C = [c,~] be three intervals.

Rump's algorithm :

c = O(a+b)
v = AQu-|c|+a+p3)
C = A+ B is defined by :
»c=adb
> v = succ(2u ® |c| ® succ(a @ (3))

Center-radius — multiplication

Rump's algorithm :

c = O(a-b)
= A(u+2u-|c|+ (J]a| +)8 + «a|b]))

2

C = A x B is defined by :
»c=a®b
> v = succ(succ(2u®|c|Bsucc(succ(|a|B o) ®F)) Bsucc(a®|b|)

Implementation of intervals vectors

typedef struct{
float center;
float radius;
} T_INTERVAL;

typedef struct{
int intervalnumber;
float *center;
float *radius;

} T_INTERVAL;
T_INTERVAL x[...]

[ct[ri[c2][r2[c8[r3]ca]|rd] [r1 [r2[r3] r4]

All the SIMD operations use vectors of four 32-bit floating point
numbers.

Performances on 1 SPE

Operations MFLOPs
Idle (function call) | 477.6
Add [crer] 2735
Add [ccrr] 345.9
Mul [crer] 2443
Mul [ccrr] 255.1
Add inf-sup 285.7

Center-diameter representation

Seems to be useful with rounding toward zero !

A= (a0) {xeR:a<x<a+a} fa>0
= 7& =
{xeR:a—a<x<a} ifa<o

But very difficult to implement !

Conclusions

» hard programming job

> necessity to develop complex algorithms to reach a high level
of performance.

> to prepare the work for the new Cell :

» fully pipelined double precision floating point number (100 DP

GFIOPS)
> up to now no information on the floating point quality

Rumours on the next generation

» |IEEE compliant
» from 8 to 32 SPE
» over 1TFLOPS

Acknowledgment

Thanks to the CINES Center for providing IBM Cell Blade access.

	The Cell processor
	Interval Arithmetic on Cell processor
	Conclusions

