
Interval arithmetic on the Cell processor

Stef Graillat Jean-Luc Lamotte Siegfried M. Rump
Svetoslav Markov

LIP6/PEQUAN, P. and M. Curie University, Paris

Institute for Reliable Computing, Hamburg University of Technology

Institute of Mathematics and Computer Science, Bulgarian. Academy of Sciences

13th GAMM - IMACS International Symposium on Scientific
Computing, Computer Arithmetic and Verified Numerical

Computations SCAN’08
El Paso, Texas, USA, September 29 - October 3, 2008

Overview

The Cell processor

Interval Arithmetic on Cell processor

Conclusions

The Cell processor

SP > 200 GFlops, DP=15 Gflops, 25GB/s memory BW, 300 GB/s EIB

Synergistic Processing Element SPE (1/2)

The SPE is a small processor with a vectorial unit.
I small memory (256 KB) for instructions and data, named

“local store” (LS)
I 128 registers of 128 bits
I 1 SPU “Synergistic Processing Unit”

I 4 units for single precision computation
I 1 unit for double precision computation

I MFC “Memory Flow Controller” which manages memory
access through DMA

Synergistic Processing Element SPE (2/2)

128-bit registers :
I 16 integers of 8 bit,
I 8 integers of 16 bit,
I 4 integers of 32 bit,
I 4 single precision floating point numbers,
I 2 double precision floating point numbers.

The SIMD processor is based on FMA and is fully pipelined in SP :

Peak performance SP : 4× 2× 3.2 = 25.6GFLOPs
Not fully pipelined in double precision :

Peak performance in DP : 2× 2× 3.2/7 = 1.8GFLOPs

Copyright

IBM

Parallelism on Cell

3 levels of parallelism :
1. processes run on Cell processors, exchange with a MPI library,
2. Data distribution and communication on the 8 SPE,

I ALF, Dacs
I POSX thread, CELL thread,
I mailing box, exchange through DMA
I data need to be aligned on quadword
I double buffering technique

3. inside a thread
I only 256 KB
I Altivec programming
I code and data dependencies : not to break the SIMD pipeline

The performance price on SPE

No division
1/x and 1/

√
x : only the 12 first bits are exact.

SPU float arithmetic is not IEEE compliant :
I only rounding mode to zero (truncation).
I The highest exponent (128) is used not for Infinity or NaN,

but is used to extend the range of the floating point.
I Inf and NaN are not recognized by arithmetic operations.
I Overflow results saturate to the largest representable positive

or negative values, rather than producing +/-IEEE Infinity.
I No denormalized results : +0 instead.

The performance price

SPU double arithmetic is IEEE compliant except :
I FP trapping is not supported.
I Denormalized operands are treated as 0.
I NaN results are always the default QNaN (Quiet NaN)

Reliable computing on Cell processor

I difficult to implement interval arithmetic.
I possible to “emulate” a rounding mode toward +∞

if r ∈ R non-negative, fl0(r) ≤ r ≤ succ(fl0(r))
and

succ(f) = max{fl0((1 + 2u)f), fl0(f + u)}.

where u is the relative rounding error and u the underflow unit

On the Cell processor, no underflow

I succ(f) = fl0((1 + 2u)f) if f > 0
I 1

2uu
−1 if f = 0

Interval with a rounding mode toward zero

Three representations :
I endpoint
I center-radius
I leftpoint-diameter

Endpoint representation — addition

Let A = [ainf , asup] , B = [binf , bsup] and C = [cinf , csup] be three
intervals, C = A + B is defined by :
Let ⊕ and ⊗ be the floating point addition and multiplication with
rounding towoard zero.

cinf =


− succ(|ainf ⊕ binf |) if (ainf ⊕ binf) < 0
ainf ⊕ binf if (ainf ⊕ binf) > 0
−1

2uu
−1 if (ainf ⊕ binf) = 0

csup =


succ(asup ⊕ bsup) if (asup ⊕ bsup) > 0
ainf ⊕ binf if (asup ⊕ bsup) < 0
1
2uu

−1 if (asup ⊕ bsup) = 0

Endpoint representation — multiplication

x = min(ainf ⊗ binf , ainf ⊗ bsup, asup ⊗ binf , asup ⊗ bsup)
y = max(ainf ⊗ binf , ainf ⊗ bsup, asup ⊗ binf , asup ⊗ bsup)

C = A× B is defined by :

cinf =


− succ(|x |) if x < 0
−1

2uu
−1 if x = 0

x else

csup =


succ(y) if y > 0
1
2uu

−1 if y = 0
y if y < 0

Center-radius — addition

Let A = [a, α] , B = [b, β] and C = [c , γ] be three intervals.

Rump’s algorithm :

c = �(a + b)
γ = 4(2u · |c |+ α+ β)

C = A + B is defined by :
I c = a ⊕ b
I γ = succ(2u ⊗ |c | ⊕ succ(α⊕ β))

Center-radius — multiplication

Rump’s algorithm :

c = �(a · b)
γ = 4(u + 2u · |c |+ (|a|+ α)β + α|b|))

C = A× B is defined by :
I c = a ⊗ b
I γ = succ(succ(2u⊗|c |⊕succ(succ(|a|⊕α)⊗β))⊕succ(α⊗|b|)

Implementation of intervals vectors

typedef struct{
float center;
float radius;

} T_INTERVAL;

T_INTERVAL x[...]

c1 r1 c2 r2 c3 r3 c4 r4

typedef struct{
int intervalnumber;
float *center;
float *radius;

} T_INTERVAL;

c1 c2 c3 c4

r1 r2 r3 r4

All the SIMD operations use vectors of four 32-bit floating point
numbers.

Performances on 1 SPE

Operations MFLOPs
Idle (function call) 477.6
Add [crcr] 273.5
Add [ccrr] 345.9
Mul [crcr] 244.3
Mul [ccrr] 255.1
Add inf-sup 285.7

Center-diameter representation

Seems to be useful with rounding toward zero !

A = (a, α) =

{
{x ∈ R : a ≤ x ≤ a + α} if a ≥ 0
{x ∈ R : a − α ≤ x ≤ a} if a < 0

But very difficult to implement !

Conclusions

I hard programming job
I necessity to develop complex algorithms to reach a high level

of performance.
I to prepare the work for the new Cell :

I fully pipelined double precision floating point number (100 DP
GFlOPS)

I up to now no information on the floating point quality

Rumours on the next generation

I IEEE compliant
I from 8 to 32 SPE
I over 1TFLOPS

Acknowledgment

Thanks to the CINES Center for providing IBM Cell Blade access.

	The Cell processor
	Interval Arithmetic on Cell processor
	Conclusions

