Interval methods for solving underdetermined nonlinear equations systems

Bartłomiej Jacek Kubica

ICCE, WUT

Poland

SCAN 2008

Nonlinear problems

- Finding all solutions of underdetermined problems:
 - A few authors mention this problem, but they do not consider it in details (R. B. Kearfott, L. Kolev, M. Gavriliu).
 - A few papers about finding a <u>single</u> solution of the underdetermined system.
 - R. B. Kearfott's paper on homotopy methods.
 - A few papers about Pareto-front computation.
- What we consider in this presentation?
 - Algorithms.
 - Theoretical analysis and background.
 - Engineering problems.

Algorithms for underdetermined problems

- Branch-and-bound method.
- Rejection/reduction tests interval Newton operators:
 - interval Gauss-Seidel operator,
 - interval componentwise Newton operator,
 - Krawczyk operator.
- The algorithm computes:
 - the list of small boxes that possibly contain a segment of the solution manifold,
 - the list of boxes verified to contain a segment of the solution manifold.

How to use interval Newton operators?

- Interval componentwise Newton:
 - We choose the equation i and variable j for the operator.
 - A list of pairs (i, j) is created at the beginning of the program and remains constant.
 - A list of pairs (i, j) is created for each box.
- Interval Gauss-Seidel:
 - Hansen proposed a technique for verifying feasibility in constrained optimization problems – variable choosing with Gauss elimination with full pivoting.
- Krawczyk operator:
 - A suitable preconditioning matrix may used e.g. the
 Moore-Penrose pseudoinverse midpoint preconditioner.

Interval componentwise Newton operator

How to choose pairs (i, j)?

- According to the idea of Herbort and Ratz, two lists are created – L1 for the use of Newton operator in ordinary and L2 – in extended interval arithmetic.
- L2 contains one pair for each variable the equation for which the corresponding Jacobi matrix element has the longest diameter.
- L1 can contain more or less pairs and is constructed in one of several ways.

Interval componentwise Newton operator

- Herbort and Ratz original method
 - Fill L1 with all pairs (i, j) for which the corresponding element \boldsymbol{J}_{ij} of the (interval-valued) Jacobi matrix is a non-zero; elements closer to the diagonal go first.
- Goualard method
 - Compute the following matrix and compute the maximum weighted matching:

$$W_{ij} = \begin{bmatrix} \operatorname{Mag} \boldsymbol{J}_{ij} & \text{if } 0 \in \boldsymbol{J}_{ij} \\ \operatorname{Mig} \boldsymbol{J}_{ij} + \max_{i} \operatorname{Mag} \boldsymbol{J}_{ij} & \text{otherwise} \end{bmatrix}$$

- Gauss elimination with full pivoting on the midpoint matrix.
- GE with full pivoting on the Goualard matrix W.

Auxiliary theorems

Consider an equation $\sum_{j=1}^{n} \boldsymbol{a_j} \boldsymbol{x_j} = \boldsymbol{b}$.

Suppose the lower bound $\underline{x_k}$ of $\boldsymbol{x_k}$ has been improved

by operator:
$$\boldsymbol{x}_{k}^{new} = (\boldsymbol{b} - \sum_{j \neq k} \boldsymbol{a}_{j} \boldsymbol{x}_{j}) / \boldsymbol{a}_{k}$$

Then: if $a_k a_l > 0$ then \underline{x}_l cannot be further improved, if $a_k a_l < 0$ then \overline{x}_l cannot be further improved, from this equation.

If the upper $\overline{x_k}$ bound has been improved, the relations are analogous.

Auxiliary theorems

In particular, if $x_k^{new} \subset \text{int } x_k$ then no other improvement is possible form this equation before improvements from other ones.

Please note that the above theorems were proven for the GS operator.

For the N_{cmp} operator the improvement is possible, but not probable.

Main theorem

Suppose we obtained $N_{cmp}(\boldsymbol{x}, f, i, j) \subset \operatorname{int} \boldsymbol{x}_{j}$ for n variables $x_{j_{k}}, j_{k} \in J$.

Then: $\forall k \notin J \ \forall x \in \mathbf{x_k} \ \forall j \in J \ \exists ! x \in \mathbf{x_j} \ f(x) = 0$

The same holds for the GS operator for one row.

Note on the margin

In particular the previous theorem implies that if we obtain $N_{cmp}(\boldsymbol{x}, f, i, j) \subset \operatorname{int} \boldsymbol{x_j}$ for all variables of a square (i.e. well-determined) equations system, we can be sure it has a unique solution in \boldsymbol{x} .

And even this margin wouldn't be too narrow to contain the proof, probably. (with apologies to Pierre de Fermat).

Please note that even Herbort & Ratz who developed the N_{cmp} operator did not seem to know this property. Also my previous works assumed it can only (dis)prove existence, but not uniqueness.

Back to underdetemined problems – computations breaking

There, both relations are fulfilled (an improbable case due to numerical imprecision):

$$\forall x_1 \in \mathbf{x_1} \ \exists ! x_2 \in \mathbf{x_2} \ f(x) = 0$$

$$\forall x_2 \in \mathbf{x_2} \exists ! x_1 \in \mathbf{x_1} \quad f(x) = 0$$

Should we bisect this box further or not?

Back to underdetemined problems – computations breaking

There, both relations are fulfilled (an improbable case due to numerical imprecision):

$$\forall x_1 \in \mathbf{x_1} \exists ! x_2 \in \mathbf{x_2} \quad f(x) = 0$$

$$\forall x_2 \in \mathbf{x_2} \exists ! x_1 \in \mathbf{x_1} \quad f(x) = 0$$

Should we bisect this box further or not?

Possibly it would be better to have several small boxes...

Computational experiments

- Investigated methods:
 - Gauss-Seidel operator with Hansen's technique, i.e. Gauss elimination with full pivoting ("**GS+Hansen**"),
 - componentwise Newton operator with Herbort-Ratz heuristic used <u>once</u> ("**cmp+HR**"),
 - componentwise Newton operator with Goualard heuristic used repeatedly ("cmp+Gou"),
 - componentwise Newton operator with <u>repeatedly</u> choosing pairs by Gauss elimination with full pivoting on midpoint matrix ("**cmp+GE**"),
 - componentwise Newton operator with <u>repeatedly</u> choosing pairs by Gauss elimination with full pivoting on Goualard matrix ("**cmp+GouGE**").

Computational experiments

- Processor Intel Core 2 Quad Q6600 2.4 GHz.
- Linux Slackware 2.6.21.5-smp operating system.
- GNU compiler 4.1.2.
- C-XSC 2.2.3 library for interval computations.
- The perfect weighted matching was computed using the Hungarian algorithm, implemented by John Weaver and distributed under GPL licence.

"Two circles problem": $(x_1^2 + x_2^2 - 4) \cdot (x_1^2 + x_2^2 - 1) = 0$ $x_1, x_2 \in [-3, 5]$

"Two circles problem": $(x_1^2 + x_2^2 - 4) \cdot (x_1^2 + x_2^2 - 1) = 0$ $x_1, x_2 \in [-3, 5]$

Thanks to Adam Wozniak for his help with preparing the figures.

"Two circles problem".

One equation, two variables.

$$\epsilon = 10^{-5}$$

	Bisections	Possible	Verif.	PLebes.	VLebes.	Time(s)
GS+Hansen	69909	65605	3390	2.24e-6	0.58	3.9
cmp+HR	198552	191401	7080	6.70e-6	0.51	8.7
cmp+Gou	70571	66014	3614	2.04e-6	0.55	3.0
cmp+GE	70571	66014	3614	2.04e-6	0.55	2.9
cmp+GouGE	70571	66014	3614	2.04e-6	0.55	2.9

Puma problem (inverse kinematics of a 3R robot).

8 equations with 8 unknowns.

One of classical benchmark problems.

http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html

$$\begin{aligned} x_1^2 + x_2^2 &= 0, & x_i \in [-1, 1], & i = 1, \dots, 8 \\ x_3^2 + x_4^2 &= 0 \\ x_5^2 + x_6^2 &= 0 \\ x_7^2 + x_8^2 &= 0 \\ 0.004731 \cdot x_1 \cdot x_3 - 0.3578 \cdot x_2 \cdot x_3 - 0.1238 \cdot x_1 - 0.001637 \cdot x_2 - 0.9338 \cdot x_4 + x_7 &= 0 \\ 0.2238 \cdot x_1 \cdot x_3 + 0.7623 \cdot x_2 \cdot x_3 + 0.2638 \cdot x_1 - 0.07745 \cdot x_2 - 0.6734 \cdot x_4 - 0.6022 &= 0 \\ x_6 \cdot x_8 + 0.3578 \cdot x_1 + 0.004731 \cdot x_2 &= 0 \\ -0.7623 \cdot x_1 + 0.2238 \cdot x_2 + 0.3461 &= 0 \end{aligned}$$

Puma problem with 8 variables and 6 equations (last two dropped).

$\epsilon - 10$						97 10 19199
	Bisections	Possible	Verif.	PLeb.	VLeb.	Time(s)
GS+Hansen	125155	73848	400	3.91e-7	1.38e-08	74.7
cmp+HR	97823	70968	0	6.11e-7	_	41.2
cmp+Gou	208551	117144	16	8.86e-7	1.79e-11	84.6
cmp+GE	254712	136736	72	7.43e-7	5.32e-10	92.1
cmp+GouGE	253071	134496	88	8.29e-7	5.49e-10	95.6

Puma problem with 8 variables and 7 equations (but the last one).

$\epsilon = 10^{-3}$						
	Bisections	Possible	Verif.	PLebes.	VLebes.	Time(s)
GS+Hansen	16879	9784	504	7.13e-24	3.39e-17	13.0
cmp+HR	406967	210760	56	4.60e-22	5.31e-15	193.3
cmp+Gou	919363	327420	60	8.04e-22	3.27e-20	422.9
cmp+GE	995668	351932	60	1.76e-21	3.29e-20	404.5
cmp+GouGE	1127947	385448	44	1.25e-21	8.46e-18	471.0

Parallelization

- Shared memory environment & OpenMP.
- The stack of boxes is shared between threads; a lock prevents it from race conditions.
- Each thread after bisection stacks one of the boxes and processes the other one.
- Statistics are computed using atomic operations (instead of each thread having its own object with statistics).
- A global variable denotes the number of threads that are not idle used to finishing computations.

Parallelization – results

- A limited speedup was observed for a few threads (c. a. 2.5 3.5 for 4 threads).
- It seems the improvement should be more significant as operations that have to be synchronized are quick.
- Probably poor implementation of OpenMP in the GNU compiler is guilty.
- An implementation using POSIX threads will explain that (coming soon).

Conclusions

- Interval methods can be applied to underdetermined problems successfully, though such problems are more demanding than well-determined ones.
- Algorithms should differ (in several details) from the ones used for well-determined problems.
- Computational results are not conclusive about the choice of Newton operator variant.
 - GS operator with Hansen's heuristic preformed well,
 - Cmp. variants happened to be both better and worse than GS.
- Some theorems were presented.
- Several accelerations are possible (e.g. parallelization).