CSP & Global
Optimization

Constraint Programming and Safe
Global Optimization

Michel RUEHER

Joint work with Alexandre GOLDSZTEJN, Yahia
LEBBAH and Claude MICHEL

Université de Nice Sophia-Antipolis / CNRS, France

SCAN 08, October 2008




Outline

Motivations

Basics on CSP

Using CSP to boost safe OBR
Computing “sharp” upper bounds

Conclusion

CSP & Global
Optimization




CSP & Global

The Problem Optimization

Michel Rueher

We consider the continuous global optimisation problem

min  f(x)
_J sc. gi(x)=0, j=1.k
P= g(x) <0, j=k+1.m (1)
b<x<b

with
» B = [b, b]: a vector of intervals of R
» f:R"—> Randg:R"— R
» Functions f and g;: are continuously differentiable
onB




Trends in global optimisation

» Performance

Most successful systems (Baron, aBB, ...) use
local methods and linear relaxations
— not rigorous (work with floats)

» Rigour
Mainly rely on interval computation
... available systems (e.g., Globsol) are quite slow

» Challenge: to combine the advantages of both
approaches in an efficient and rigorous global
optimisation framework

CSP & Global
Optimization

Michel Rueher

Trends in global
optimisation
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Example of flaw due to a lack of rigour Optimization

Michel Rueher

Consider the following optimisation problem:

min X
s.t. y—x2>0
y—x2x(x—-2)+105<0 ,

X,y € [-10,+10]

it

Baron 6.0 and Baron 7.2 find 0 as the minimum . ..




Basics on CSP

A Rueher

Basics on CSP




Numeric CSP CSP & Global

Optimization

Michel Rueher

» X ={xy,...,Xn} is a set of variables

» D ={Dy,,...,Dy,} is aset of domains
(Dy, contains all acceptable values for variable x;)

DX,‘ = [&771]

Numeric CSP

» C={cy,...,Cn} is a set of constraints
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CSP: Overall scheme Optimization

Michel Rueher

A Branch & Prune schema:

1. Pruning the search space

2. Making a choice to generate two (or more)
sub-problems

» The pruning step — filtering techniques to
reduce the size of the intervals

» The branching step — splits the intervals (uses
heuristics to choose the variable to split)




Local consistencies (1) Cotmisaion

Michel Rueher

A constraint system C satisfies a local consistency
property if each constraint C holds in a relaxation of C

Consider X = [x,X] and C(x, X1,...,Xn) € C:
if C(x,xq,...,Xn) does not hold for any values a € [x, x],
then X can be shrinked to X = [x/, X]




Local consistencies (2) Cotmisaton

Michel Rueher

» 2B-consistency only requires to check the
Arc—Consistency property for each bound of the

intervals
Variable x with X = [x, X] is 2B—consistent for constraint
f(x,x1,...,xn) = 0if X and X are the leftmost and the

rightmost zero of f(X, X1yeuny Xn) pocal consitencies

» Box-consistency :

— coarser relaxation of AC than 2B—consistency
— better filtering

Variable x with X = [x, X] is Box—Consistent for constraint
f(x,x1,...,X,) = 0 if X and X are the leftmost and the
rightmost zero of F(X, X1,. .., Xs), the optimal interval

extension of f(x, xq,...,Xp)




CSP & Global

Filteri ng Optimization

Michel Rueher

o 2B-filtering Algorithms ~~ projection functions

— considers that each occurrence is a different new
variable

— initial constraints are decomposed into “primitive”
constraints: amplifies the dependency problem

o Box-filtering Algorithms ~~ monovariate
version of the interval Newton method
— Monovariate constraints: substituting intervals for all
variables but one
— Computing bounds: dichotomy algorithm
(combined with the interval Newton method)
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Limits of Local Consistencies Optimization

Michel Rueher

» A constraint is handled as a black-box by local
consistencies (2B,BOX,...)
e No way to catch the dependencies between

constraints
e Splitting is behind the success for small dimensions

» Higher consistencies
(KBfiltering,Boundfiltering)
— capture some dependencies between constraints
— visiting numerous combinations

» A global constraint to handle a linear
approximation with LP solvers
— safe linear relaxations
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Safe use of Linear Relaxation Optimization

Michel Rueher

» A global constraint to handle an approximation
of the constraint system with LP

» QUAD_SOLVER
— Global constraint on linear relaxations
— local consistencies (2B, Box) and interval
methods (Newton)
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The QUAD_SOLVER framework Optimization

» Reformulation

e capture the linear part
— replace non linear terms
by new variable

eg x% by y;

» Linearisation

e introduce redundant
linear constraints
— tight approximations

(RLT) g
» Computing min(X) = x; and L3/
max(X) = X; in LP 73{ / v

feasible space

—z—xp=0
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Quad_Solver filtering algorithm Optimization

Michel Rueher

Function Quad_filtering(1N: X, D, C, €) return D’

1. Reformulation
— linear inequalities [C]g for the nonlinear terms in C

2. Linearisation/relaxation of the whole system [C],
—alinear system LR = [C]. U [C]r
3. D =D
4. Pruning:
While amount of reduction of some bound > ¢ and
0 ¢ D' Do
4.1 Update the coefficients of [C]z according to D’
4.2 Reduce the lower and upper bounds x; and X; of
each initial variable x; € X computing min and max
of X; subject to LR with a LP solver




Issues in the use of linear relaxation

» Coefficients of linear relaxations are scalars
= computed with floating point numbers

» Efficient implementations of the simplex algorithm
= use floating point numbers

» All the computations with floating point numbers
require right corrections

CSP & Global
Optimization
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Safe approximations of L, Optimization

Michel Rueher

Li(y,a) =y > 2ax — o?

Effects of rounding: LA
. Lip(x)
» rounding of 2« g
= rotation on y axis

/

» rounding of o?
= translation on y axis
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Correction of the Simplex algorithm Opiimization

Michel Rueher

Consider the following LP :
minimise ¢’ x
subjecttob < Ax < b

Solution = vector xg € R"
LP solver computes a vector xg € F" + XR

X is safe for the objective if CTXR > ch,:

Neumaier & Shcherbina
— cheap method to obtain a rigorous bound of the
objective
(use of the approximation solution of the dual)
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Using constraint techniques to boost Opiimization
safe OBR (optimal based reduction) Vichel Rueher




Branch and bound e

Michel Rueher

» BB Algorithm:
While £ # ) do %L initialized with the input box
e Select a box B from the set of current boxes £
Reduction (filtering or tightening) of B
Lower bounding of fin box B
Upper bounding of f in box B
Splitting of B (if not empty)

» Upper Bounding — Critical issue:
to prove the existence of a feasible
point in a reduced box

» Lower Bounding - Critical issue:
to achieve an efficient pruning
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Lower bOU nding Optimization

Michel Rueher

» Relaxing the problem
e linear relaxation R of P

min d™x
st. Ax<b @

e LP solver —f*

— numerous splitting

» OBR is a way to speed up the reduction process




Optimality Base Reduction Cptmization

Michel Rueher

» Introduced by Ryoo and Sahinidis

o to take advantage of the known bounds of the
objective function to reduce the size of the
domains

OBR: intuitions & theorems

e uses a well known property of the saddle point to
compute new bounds for the domains taking into
account the known bounds of the objective function




Theorems of OBR i

Michel Rueher

» Let [L, U] be the domain of f. If the constraint
X; — X; < 0 is active at the optimal solution of R and
has a corresponding multiplier A7 > 0 (\* is the
optimal solution of the dual of R), then

_ —L
X; > X; with X; = X; — U)\* .
i

(3)

if X; > x;, the domain of x; can be shrinked to [}, X|] OBR: nitons & theorams
without loss of any global optima

» similar theorems for x; — x; < 0 and g;(x) < 0.




OBR: intuitions
» Ryoo & Sahinidis 96

L u
% L % — L
X=%-5 X=X+ 5
Xi
X; i
[ [
X; X;

¢ does not modify the very branch and bound

process
o almost for free !

CSP & Global
Optimization

Michel Rueher

OBR: intuitions & theorems




OBR Issues i

Michel Rueher

» Critical issue: basic OBR algorithm is unsafe

o it uses the dual solution of the linear relaxation

o Efficient LP solvers work with floats —
the available dual solution A\* is an approximation
if used in OBR ...
.. — OBR may remove actual optimum !

OBR: intuitions & theorems

» Solutions: two ways to take advantage of OBR
1. prove dual solution (Kearfott): combininig the dual
of linear relaxation with the Kuhn-Tucker conditions
2. validate the reduction proposed by OBR with CP !
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CP approach: intuition Optmization

» Essential observation: if the constraint system

L<f(x)<U
gi(x)=0,i=1.k
gi(x) <0, j=k+1.m

has no solution when the domain of x is set to
[x;,X]], then the reduction computed by OBR is valid

» Try to reject [x;, x]] with classical filtering
techniques, otherwise add this box to the list of
boxes to process
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CP algorithm Optimization

Michel Rueher

L, =0 % set of potential non-solution boxes

for each variable x; do
Apply OBR
and add the generated potential non-solution boxes to £,

for each box B; in £, do
B; := 2B-filtering(B;)
if B = 0 then reduce the domain of x;
else B{ := QUAD_SOLVER-filtering(B)
if B = 0 then reduce the domain of x;
else add B; to global list of box to be handled endif
endif

[ Compute f with QUAD_SOLVER in X ]
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Experiments Optimization

Michel Rueher

» Compares 4 versions of the branch and bound

algorithm:

e without OBR

o with unsafe OBR

o with safe OBR based on Kearfott’s approach

o with safe OBR based on CP techniques
implemented with Icos using Coin/CLP and
Coin/lpOpt

» On 78 benches (from Ryoo & Sahinidis 1995,
Audet thesis and the coconut library)

Experiments

» All experiments have been done on
PC-Notebook/1Ghz.
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Experimental Results (2): Synthesis Optimization

Michel Rueher

Synthesis of the results:

Yi(s) | %saving
no OBR 2384.36 -
unsafe OBR 881.51 | 63.03%
safe OBR Kearfott || 1975.95 | 17.13%
safe OBR CP 454.73 | 80.93%

(with a timeout of 500s)

Safe CP-based OBR faster than unsafe OBR !

... because wrong domains reductions prevent the
upper-bounding process from improving the current
upper bound !!




Computing “sharp” upper bounds [t

Michel Rueher

Computing “sharp”
upper bounds
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Statement of the problem Optimization

Michel Rueher

» Upper bounding
o local search
— approximate feasible
POINt Xapprox
o epsilon inflation process

and proof
— provide a feasible box Xproved

o compute T = min(f(Xproved), T )

» Critical issue: to prove the existence of a feasible
point in a reduced box
° Singularities Statement of the problem
e Guess point too far from a feasible region (local
search works with floats)




Using the lower bound to get an o & Glopa
upper'bou nd Michel Rueher

X

Branch&Bound step where P is the set of feasible points
and R is the linear relaxation

Statement of the problem

Idea: modify the lower bound ... to get an
upper-bound !




CSP & Global

Lower bound: a good starting point to Optmization
find a feasible upper-bound ? Vichel Rueher

Set of feasible points

N - oo - - - - ® Approximate feasible point
Set of non feasible points

X
N, optimal solution of R, not a feasible point of P but
(may be) a good starting point:
» BB splits the domains at each iteration:
smaller box ~~ N nearest from the optima of P

» Proof process inflates a box around the guess point
~» compensate the distance from the feasible region

Statement of the problem




Method i

Michel Rueher

» Correction procedure to get a better feasible point
from a given approximate feasible point

— to exploit Newton-Raphson for
under-constrained systems of equations (and
Moore-Penrose inverse)

good convergence when the starting point is
nearly feasible

Statement of the problem




Handling square systems of equations Cptmizaion

Michel Rueher

> g:(g177gm) : Rn—> Rm(n:m)
— Newtqn-Raphson step: '
x(+1) — x() _ J51 (X(I))Q(X(I))

Converges well if the exact solution to be
approximated is not singular




Handling under-constrained systems of Opimizaton
equations A | Rueher

Manifold of solutions

— linear system /(x) = 0 is under-
constrained

— Choose a solution x(V) of I(x) = 0

Best choice:

Solution of /(x) = 0 close to x(©)

Can easily be computed with the
Moore-Penrose inverse:

X+ = X — A (x0)g(x)

Af € R™™M is the Moore-Penrose in-
verse of Ag, solution of the equation
which minimizes ||x(1) — x(0)]|)

-4

gx)=0 Newton for
under-constrained systems
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Handling under-constrained systems of Optimization
equations and inequalities

» Under-constrained systems of equations and inequalities
~ introduce slack variables

» Initial values for the slack variables have to be provided
Slightly positive value

— to break the symmetry
— good convergence

Newton for

under-constrained systems
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A new upper bounding strategie Optimization

Function UpperBounding(IN X, X/p; OUTS’)

% S’: list of proven feasible boxes
% Xx/p: the optimal solution of the LP relaxation of P(x)
S =10
X5 = FeasibilityCorrection(x/s) % Improving x;, feasibility
Xp = InflateAndProve(xg,,,, X)
if x, # 0 then
S =8UuUx,
endif
return &’

New upper bounding
strategie
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Experiments (1) Optimization

Michel Rueher

» Significant set of benchmarks of the COCONUT
project

» Selection of 35 benchmarks where Icos did find the
global minimum while relying on an unsafe local
search

» 31 benchmarks are solved within a 30s time out

» Almost all benchmarks are solved in much less
time and with much more proven solutions

Experiments.




E H 2 CSP & Global
xperiments (2) Qptimization

Name (n,m) LS: t(s) UB/LB: t(s) hel Rueher

alkyl 14,7 - 154

circle (3,10) 1.98 0.84

exl4_1.2 (6,9) - 1.74

ex14_1_3 (3, 4) - 0.42

ex14_1.6 (9, 15) - 12.44

ex14 1.8 (3, 4) - -

ex2_1_1 (5,1) 0.09 0.04

ex2 1.2 (6,2) - 0.24

ex2_1_3 (13,9) - 1.32

ex2_ 1.4 (6,5) 0.52 0.43

ex2_ 1.6 (10, 5) 1.61 0.35

ex3 1.3 (6,6) 1.03 0.29

ex3 1.4 (3,3) 6.51 0.14

ex4_1_2 (1,0) 18.84 17.08

ex4_ 1.6 (1,0) 0.11 14.28

ex4_1.7 (1,0) 0.07 0.01

ex5 4 2 (8, 6) - 18.15

ex6_1_2 (4, 3) 0.51 0.52

ex6_1_4 (6, 4) 7.45 8.92

ex7_3_5 (13, 15) - -

ex8_ 1.6 (2,0) - 0.39

ex9_1_1 (13,12) - -

ex9_1_10 || (14,12) - 3.76

ex9_1_4 (10, 9) - 0.49

ex9_ 1.5 (13, 12) - 2.68

ex9_ 1.8 (14, 12) - 3.76

ex9_2_1 (10, 9) - 0.68 :

ex9 2 4 8,7) 2.94 0.69 S

ex9 2 5 8,7) - -

ex9 2 7 (10, 9) - 0.68

ex9 2 8 (6, 5) - 0.53

house (8,8) - 0.90

nemhaus (5, 5) 0.02 0.01




Conclusion

Michel Rueher

» CSP refutation techniques
» allow a safe and efficient implementation of OBR
» can outperform standard mathematical methods
» might be suitable for other unsafe method

» Safe global constraints

» provide an efficient alternative to local search:
— good starting point for a Newton method ~~
feasible region

» drastically improve the performances of the
upper-bounding process

Conclusion
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