Tolerable Solution Sets
to Interval Linear Systems
with Dependent (Tied) Coefficients

Irene A. Sharaya
Sergey P. Shary

Institute of Computational Technologies
Novosibirsk, Russia



There are quite a lot of papers devoted to interval linear systems
with dependent (tied) data:

Jirit Rohn — Linear Algebral and its Appls., 1981

Ch. Jansson — Computing, 1991

Siegfried M. Rump — Linear Algebra and its Appls., 1998

Lubomir V. Kolev — Reliable Computing, 2004

Evgenija D. Popova — 2001, 2005

Sergey P.Shary — Siberian J. Numer. Math., 2004

Ramil R. Akhmerov — Reliable Computing, 2005

G. Alefeld, V. Kreinovich, G. Mayer — a series of papers of 1993,
1996, 1997, 1998, 2001, 2003

All of them deal with united solution set.

We shall consider tolerable solution set.



Notation

Boldface letters — for intervals.
Calligraphic letters — for sets.

Lower indices — for projections of a set
onto coordinate subspaces.

® — symbol of memberwise multiplication (for sets).

Examples.
If A CR™*"™ then
A ={(A;1,...,4;,) | A e A}
For x € R",
Aoz =1{Az| Ac A}.



Tolerable solution set of ILAS

A E Ran' b E Rm

IS

Ar =b, A€ A, bEDb

family of LASes

Tolerable solution set (TSS) of ILAS is

Etol(Avb) = 9

,

r € R™

;

7\

r € R"

\

(VA € A) (3b € b) (Az = b)}

AGCzxz C b}.



Tolerable solution set of ILAS
with dependent (tied) coefficients

A dependence (tie) on coefficients is a set G C R™M*X",

A system Axz = b with tie g on coefficients is the family of

Ar=b, A€ ANgG, beobd.

Tolerable solution set of the system Az = b
with a tie G on coefficients is defined as

=, (ANG.b) = {xER” (VAE(ADQ))(Hbeb)(A:I;:b)}

_ {xeR” (ANG) oz C b}.



Convex polyhedral ties on coefficients

Let G be a convex polyhedron
intersection of finite number of half-spaces
solution set to a system of linear inequalities

Examples of convex polyhedrons in R3:

|

. -l
4 & &F
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ANg =7

g and A are convex polyhedrons, and A is bounded.

We denote V := ANG.
Clearly, V is a bounded convex polyhedron.




}V is a bounded convex polyhedron
convex polytope
convex hull of its vertex set.

The set of vertices of V) is denoted as vert V.
vert )Y has finitely many members.

o — points of vert)



Lemma 1

VOxrCb «<— (vertV) oz Chb.

o — vertV

O x

linear map

e — (vertV)owx




Lemma 2

VoOoxCb <— & ((vert(vz-;)) ®x C bi>.
()

Proof:
1) b € IR™ implies
VozChb <= & (Vo) Cb).
(/

2) According to definitions,
Vox);, =V, O
3) Applying Lemma 1 to convex polytope V;- results in
V;-©Ox Cb < (vert(vz-;)) ®x Cb;.



Similarity of Lemmata 1 and 2

Both lemmata reduce the inclusion V ®x C b
to finite systems of two-sided linear inequalities:

VoOxChb

Lemma )1/

\L‘emma 2

System 1

& (b <Vzx< 5)
VevertV

&

1

System 2

& b; < ve < b,
vevert(V;.) (_Z == Z)
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Solution set of a two-sided linear inequality

IS a set, bounded by two
parallel hyperplanes

— hyperstripe.
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Shape of =;,;(ANG,b)

For convex polyhedron G, =;,;(ANG,b) is solution set

of a two-sided linear inequalities system

— intersection of a finite number of hyperstripes
(particular case of convex polyhedron)

Examples in R3:
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Distinction of Lemmata 1 and 2

System 1 D System 2

| |
& (vertV);. ©z C b; & (Vert(Vi:)) ©x Cb;
1

1

due to

(vertV);. D vert(V;.).




Computation of tolerable solution set for ILAS
with a convex polvyhedron tie on coefficients

Etol(A NG,b) =7

Algorithm

1) Find the sets vert((ANgG);.), i=1,...,m.
2) Find or estimate the solution set of the system

& & ve C b;.
i vevert((ANg);)
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Examples

We assume that efficient methods for the solution
of two-sided linear inequalities system are available.

In examples, we shall fulfil only the first step of the method:

Find vert((AnNg);.)

Compexity of the first step of our algorithm depends on

— shape of the set G (linear subspace, interval,...),
— way of description of G (inequalities system, etc.,...),
— location of G with respectto A (AC G, GC A,...)
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Example 1

Problem. =, (A,b) =7

We may think that A C G, and then
(ANG);: = A;.

Vert((A M g)i;) = vert(A4;:)

System 2: & (vertA,;.)) ©x Cb;
(
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Etol(Aa b) = 7

Number

System Form of FOWS

1 & (vertA),-©x Cb;, | m-2™"
?

2 & (vert(AZ-;)) GxCb m-2"

(2

Due to replications, the number of rows in system 1
is 2(m=1)n times larger than that in system 2.
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Example 2

Problem.

Matrices from the set G: A more general requirement
on coefficients of the system:

symmetric \ e all the coefficients

skew-symmetric are divided into groups,

circulant e coefficients from a group

Toeplitz ( ) are proportional,

Hankel e there are no coefficients
) \ from one row in a group.

Etol(A A g7 b) =7
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(ANG);: = A,

where A is an inclusion maximal interval matrix
contained in A that meets the elementwise

proportionality requirement on G.

—

A is easy to find.
If, for instance, g represents symmetric matrices,

—

then AZ] o AZ] M 14‘72

Finally, vert((ANG);) = vert(A;.) — vertices of the box.

System 2: & (Vert(zi;» ®x Cb;.

1
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Remark. In Example 2,

ANG# A,
but
(A a g)i: — Zz

Anyway, this is sufficient for the equality

Sti(ANG,b) = Etol(za b).
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Numerical problem for Examples 1 and 2
Given: Ax = b,

(1 [0.1] 0. 2]
A=110.1] [-4. 1] 0.2]]

J is the set of symmetric matricies.

Required: =, ,;(A,b), =;,;(ANG,b).

b=

United solution set for this system with symmetric tie
was considered in

Alefeld G., Kreinovich V., Mayer G. On symmetric solution sets

// Inclusion methods for nonlinear problems with applications
in engineering, economics, and physics / Herzberger J., ed.

— Wien, New York: Springer, 2003. — P. 1—-23. — (Computing

Supplement; 16)
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1. = (ANG,b) = 5, (A,b), since A is symmetric.

2. System 2.

y

L1

L1

L1

L1

Lo
4o

LD
4xo

L2

IONANIANANIANA

0,2
0,2
0,2
0,2
0,2
0,2

(0.4,-0.4)

(2,0)
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Comparison of results
for united and tolerable solution sets
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Conclusions

B =, ,,(ANgG,b), for a convex polyhedral set G,

IS intersection of finite number of hyperstripes.

B =,,,(ANG,b) can be found from the system

& & ve C b;.
i vevert((ANg);:)
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T hank you for your attention
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Example 3

Problem. B c HRme’ C c ]HR”X”’ D c HRan’ X € RmXn
{(X|(VBeB)(vCeC) (BX+XCeD)} —7

> B Xy, + lleszz'l + (B + Cj;) Xi; € Dy
L7 ]

k=1
k% i

System 2: &

2¥)

( (vert(Bi,ysi)) © Xzt

Xi#i© (vert(C#j,j))

K (Vel’t(Bii + ij)) O, X,,;j

C D;.

Ly
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