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The problem
Rump’s Algorithm
Available software

Task

Find a verified enclosure [x ] for the solution of the dense linear
system [A][x ] = [b], A ∈ IR

n×n, b ∈ IR
n.

Also allowed:

Real point systems

Complex point systems

Complex interval systems
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The problem
Rump’s Algorithm
Available software

Problem

Problems of higher dimension require a lot of processing power
and especially a lot of memory.

Verified solution using Rump’s algorithm is 6-8 times
slower than normal floating point solution using
LU-decomposition.
Memory requirements: Matrices A, R and [C]

Real point system, n=20000: about 12GB
Real point system, n=50000: about 75GB
Real interval system, n=50000: about 93GB
Complex point system, n=50000: about 150GB
Complex interval system, n=50000: about 186GB

Solution: Parallelization for distributed memory systems.
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The problem
Rump’s Algorithm
Available software

Algorithm: Verified solution of dense linear (interval-)systems

Input: Square matrix A and right hand side b
Output: An interval vector enclosing the solution of Ax = b
Compute approximate inverse R of A
Compute approximate solution ex := Rb
repeat

ex := ex + R(b − Aex)
until ex exact enough or max. iterations reached
Z := R ⋄ (b − Aex)
C := ⋄(I − RA)
Y := Z
repeat

YA := blow(Y , ǫ)
Y := Z + C · YA

until Y ⊂ int(YA) or max. iterations reached
if Y ⊂ int(YA) then

Unique solution in x ∈ ex + Y
else

Algorithm failed, A is singular or condition is too bad

For badly conditioned systems: Second stage using inverse of double length and extended precision dot products.
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The problem
Rump’s Algorithm
Available software

Intlab: Fast, easy to use

Serial C-XSC solvers: Fast, high accuracy

Intel MKL and CMKL: Krawczyk-Solver is about 20 times
slower, discontinued(?)
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C-XSC
Dot products
BLAS, LAPACK, ScaLAPACK

C++ library for eXtended Scientific Computing

Basic datatypes: real, interval, complex, cinterval

Datatypes for vectors and matrices

Many built in functions

Computation of sums and dot products with maximum
precision using fixed-point accumulator

Toolbox with algorithms for many problems (linear- and
nonlinear systems, optimization, ...)

Mariana Kolberg, Walter Krämer, Michael Zimmer Efficient parallel linear dense interval system solvers



Introduction
Tools

Parallelization
Results

Summary

C-XSC
Dot products
BLAS, LAPACK, ScaLAPACK

C++ library for eXtended Scientific Computing

Basic datatypes: real, interval, complex, cinterval

Datatypes for vectors and matrices

Many built in functions

Computation of sums and dot products with maximum
precision using fixed-point accumulator

Toolbox with algorithms for many problems (linear- and
nonlinear systems, optimization, ...)

Mariana Kolberg, Walter Krämer, Michael Zimmer Efficient parallel linear dense interval system solvers



Introduction
Tools

Parallelization
Results

Summary

C-XSC
Dot products
BLAS, LAPACK, ScaLAPACK

C++ library for eXtended Scientific Computing

Basic datatypes: real, interval, complex, cinterval

Datatypes for vectors and matrices

Many built in functions

Computation of sums and dot products with maximum
precision using fixed-point accumulator

Toolbox with algorithms for many problems (linear- and
nonlinear systems, optimization, ...)

Mariana Kolberg, Walter Krämer, Michael Zimmer Efficient parallel linear dense interval system solvers



Introduction
Tools

Parallelization
Results

Summary

C-XSC
Dot products
BLAS, LAPACK, ScaLAPACK

C++ library for eXtended Scientific Computing

Basic datatypes: real, interval, complex, cinterval

Datatypes for vectors and matrices

Many built in functions

Computation of sums and dot products with maximum
precision using fixed-point accumulator

Toolbox with algorithms for many problems (linear- and
nonlinear systems, optimization, ...)

Mariana Kolberg, Walter Krämer, Michael Zimmer Efficient parallel linear dense interval system solvers



Introduction
Tools

Parallelization
Results

Summary

C-XSC
Dot products
BLAS, LAPACK, ScaLAPACK

C++ library for eXtended Scientific Computing

Basic datatypes: real, interval, complex, cinterval

Datatypes for vectors and matrices

Many built in functions

Computation of sums and dot products with maximum
precision using fixed-point accumulator

Toolbox with algorithms for many problems (linear- and
nonlinear systems, optimization, ...)

Mariana Kolberg, Walter Krämer, Michael Zimmer Efficient parallel linear dense interval system solvers



Introduction
Tools

Parallelization
Results

Summary

C-XSC
Dot products
BLAS, LAPACK, ScaLAPACK

C++ library for eXtended Scientific Computing

Basic datatypes: real, interval, complex, cinterval

Datatypes for vectors and matrices

Many built in functions

Computation of sums and dot products with maximum
precision using fixed-point accumulator

Toolbox with algorithms for many problems (linear- and
nonlinear systems, optimization, ...)

Mariana Kolberg, Walter Krämer, Michael Zimmer Efficient parallel linear dense interval system solvers



Introduction
Tools

Parallelization
Results

Summary

C-XSC
Dot products
BLAS, LAPACK, ScaLAPACK

In C-XSC

Use a fix-point accumulator of sufficient length

g 2emax t t 2|emin|

Dot products can be computed with maximum accuracy

Slow! (when realized in software)
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C-XSC
Dot products
BLAS, LAPACK, ScaLAPACK

DotK algorithm (Ogita, Rump, Oishi)

Compute dot product in K -fold working precision by using error
free transformations.

Error free transformations

For all a, b ∈ F and ◦ ∈ {+,−, ·} there exists a y ∈ F with

a ◦ b = x + y

and x = fl(a ◦ b).
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BLAS, LAPACK, ScaLAPACK

Dot product in K -fold working precision

Uses pure floating point operations

Reliable error bound can be computed with floating point
operations

Mariana Kolberg, Walter Krämer, Michael Zimmer Efficient parallel linear dense interval system solvers



Introduction
Tools

Parallelization
Results

Summary

C-XSC
Dot products
BLAS, LAPACK, ScaLAPACK

Dot product in K -fold working precision

Uses pure floating point operations

Reliable error bound can be computed with floating point
operations

Mariana Kolberg, Walter Krämer, Michael Zimmer Efficient parallel linear dense interval system solvers



Introduction
Tools

Parallelization
Results

Summary

C-XSC
Dot products
BLAS, LAPACK, ScaLAPACK

Dot product in K -fold working precision

Uses pure floating point operations

Reliable error bound can be computed with floating point
operations

Mariana Kolberg, Walter Krämer, Michael Zimmer Efficient parallel linear dense interval system solvers



Introduction
Tools

Parallelization
Results

Summary

C-XSC
Dot products
BLAS, LAPACK, ScaLAPACK

Exact result: 9.9999999999999995E-021 Condition: 1E+020

Direct computation using C-XSC operators:
-3.4944599247537239E-012
Time used: 0.003654s

Computation using accumulator:
9.9999999999999995E-021
Time used: 0.148152s

Computation using DotK:
k=2:
[3.7130847403408012E-021,1.6286857271626398E-020]
Time used: 0.0236309s

k=3:
[9.9999999999999979E-021,1.0000000000000001E-020]
Time used: 0.0542479s

k=4:
[9.9999999999999994E-021,9.9999999999999995E-021]
Time used: 0.0600731s

k=5:
[9.9999999999999994E-021,9.9999999999999995E-021]
Time used: 0.0686409s
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C-XSC
Dot products
BLAS, LAPACK, ScaLAPACK

BLAS and LAPACK: Highly optimized routines for
numerical algebra

ScaLAPACK: Special version for distributed memory
parallelization

Manipulate rounding mode to get verified enclosures.

Example: Product of two real matrices

Input: Two real matrices A and B
Output: An interval matrix enclosing C = AB
SetRound(-1);
SetInf(C, A*B);
SetRound(1);
SetSup(C, A*B);
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Basics
Two-dimensional, block cyclic distribution
Parallel computations

Basic concept

All matrices are distributed equally among processes, every
step of the algorithm is computed by all processes

Uses ScaLAPACK instead of LAPACK

Uses two dimensional block cyclic distribution for matrices
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Basics
Two-dimensional, block cyclic distribution
Parallel computations

Process grid:

P0 P1 P2

P3 P4 P5

P6 P7 P8

P9 P10 P11

Number of rows and columns should be the same or nearly the
same.
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Basics
Two-dimensional, block cyclic distribution
Parallel computations

Matrix is distributed accordingly:



































P0 P1 P0 P1

P2 P3 P2 P3

P0 P1 P0 P1

P2 P3 P2 P3



































Optimal size of blocks is hardware dependent.
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Basics
Two-dimensional, block cyclic distribution
Parallel computations

Matrix-matrix products and approximate inverse are
computed with ScaLAPACK.

Matrix-vector products are computed using high precision
dot products.

These dot products must be split among processes in a
row.

Intermediate results are stored in accumulators.

MPI communicators are introduced for every row and column of
process grid.
→ Broadcasts limited to a row or column are possible.
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Basics
Two-dimensional, block cyclic distribution
Parallel computations

Algorithm: Parallel matrix-vector product

Input: A matrix A and vector x
Output: The result of A times x
for all i ∈ myrows do

compute own parts of dot product
broadcast intermediate results in own row
compute final result for row i
broadcast final result in own column

Now all processes know the result of Ax . (Necessary to check
break conditions etc.)
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Use of higher precision dot products, BLAS/LAPACK only
used for inversion
Switch to a special case of the two-dimensional block
cyclic distribution
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Two-dimensional, block cyclic distribution
Parallel computations

Parallel matrix-matrix product R = AB in stage two:

R is stored in the same way as A and B.

Every process needs the vertical blocks of size n × nb of A.

Every process broadcasts his part of this block.

Computations for the corresponding vertical n × nb block
can then be performed in parallel.

This is repeated for all P vertical blocks.
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Two-dimensional, block cyclic distribution
Parallel computations

How is the system matrix distributed in the beginning?
1 Process 0 stores the complete matrix in the beginning and

distributes it.
2 A function pointer to a function like void getA(int i,
int j, real &r) is used, every process fills his part of
the matrix with this function.
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Some Remarks concerning compilation:

DotK algorithm does not work if processor uses higher
precision registers. Appropriate compiler switches must be
set (use of SSE floating point registers,...).

Inlining has a very high impact on the performance.
Appropriate compiler switches must be used (Inlining limits
may have to be extended).

OpenMP instructions require an OpenMP capable
compiler, preferrably the latest version.
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PC cluster
ALICEnext
XC6000
JUMP

Hardware:

24 standard PCs

CPU: Core2Duo 2.33GHz

2GB RAM

Standard Gigabit Ethernet

Software:

GNU compiler 4.2.1

LAM MPI

ATLAS BLAS 3.8.1
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Time in s, condition 1010, n = 5000, K = 2

P real interval complex cinterval

1 124.5 180.8 589.9 690.3

2 78.7 103.3 295.7 346.5

4 53.7 69.7 187.4 212.3

8 39.2 51.4 119.1 133.9
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Speed up, condition 1010, n = 5000, K = 2

P real interval complex cinterval

1 1.00 1.00 1.00 1.00

2 1.58 1.75 1.99 1.99

4 2.32 2.59 3.15 3.25

8 3.18 3.52 4.95 5.16
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Average number of exact digits, condition 1010, n = 5000,
K = 2

P real interval complex cinterval

1 14.6 5.0 (13.9, 14.0) (3.8, 4.0)

2 14.6 5.0 (13.9, 14.0) (3.8, 4.0)

4 15.3 5.0 (14.7, 14.8) (3.8, 4.0)

8 15.3 5.0 (14.7, 14.8) (3.8, 4.0)
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Time in s, condition 1017, n = 1000, K = 3

P real interval complex cinterval

1 173.5 281.7 578.7 1047.3

2 87.6 138.1 284.9 516.0

4 42.5 69.5 147.7 260.5

8 25.1 39.0 75.2 133.8
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Speed up, condition 1017, n = 1000, K = 3

P real interval complex cinterval

1 1.00 1.00 1.00 1.00

2 1.98 2.04 2.03 2.03

4 4.08 4.05 3.92 4.02

8 6.91 7.22 7.70 7.83
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Average number of exact digits, condition 1017, n = 1000,
K = 3

P real interval complex cinterval

1 15.8 − (15.8, 15.8) −

2 15.8 − (15.8, 15.8) −

4 15.8 − (15.8, 15.8) −

8 15.8 − (15.8, 15.8) −
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Time in s, OpenMP version, random real matrix, n = 1000,
K = 2

real interval complex cinterval

P = 1 1.38 1.82 5.06 6.02

P = 2 0.87 1.04 2.86 3.38

Speed Up 1.59 1.75 1.77 1.78
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Time in s, OpenMP version, random real matrix, n = 2000,
K = 2

real interval complex cinterval

P = 1 8.88 11.42 33.56 38.43

P = 2 5.12 6.26 17.90 20.69

Speed Up 1.73 1.82 1.87 1.86
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Time in s, OpenMP version, random real matrix, n = 3000,
K = 2

real interval complex cinterval

P = 1 27.41 35.57 105.71 119.87

P = 2 15.27 19.21 55.98 63.61

Speed Up 1.80 1.85 1.89 1.88
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PC cluster
ALICEnext
XC6000
JUMP

Hardware:

512 × 2 AMD Opteron 1.8GHz

1GB RAM per processor

Gigabit-Ethernet + 2D-Torus

Software:

OS: Linux

GNU Compiler 3.3.1

AMD Core Math Library
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ALICEnext
XC6000
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Time in s, condition 1010, n = 5000, K = 2

P real interval complex cinterval

1 298.1 465.5 − −

2 191.8 278.0 789.5 902.7

4 120.8 166.3 461.7 483.3

8 86.7 95.6 250.0 289.9
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PC cluster
ALICEnext
XC6000
JUMP

Hardware:

128 Intel Itanium 2 1.5GHz

6GB per processor

Quadrics QsNet II interconnect

Software:

Intel Compiler 10.0

Intel Math Kernel Library 10.0
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K = 2, well conditioned real system

Time in s P=20 P=50 P=100

n = 10000 108.1 52.0 35.3

n = 25000 1188.0 532.2 299.7

n = 50000 - - 1978.6

Speed Up P=20 P=50 P=100

n = 10000 - 80.1% 59.0%

n = 25000 - 89.3% 79.3%

n = 50000 - - -

Speed Up is given as percentage of theoretical optimum
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K = 2, well conditioned interval system

Time in s P=20 P=50 P=100

n = 10000 136.0 64.6 42.2

n = 25000 1571.7 687.3 385.3

n = 50000 - - 2561.1

Speed Up P=20 P=50 P=100

n = 10000 - 84.2% 64.5%

n = 25000 - 91.5% 81.6%

n = 50000 - - -

Speed Up is given as percentage of theoretical optimum
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Since data is distributed equally among processors, huge
dense systems can be solved.

Using the full XC6000 cluster (128 Itanium 2 processors, 6GB
per processor), we could solve a real system of dimension
100000 × 100000 in 12118 seconds.

Mariana Kolberg, Walter Krämer, Michael Zimmer Efficient parallel linear dense interval system solvers



Introduction
Tools

Parallelization
Results

Summary

PC cluster
ALICEnext
XC6000
JUMP

Since data is distributed equally among processors, huge
dense systems can be solved.

Using the full XC6000 cluster (128 Itanium 2 processors, 6GB
per processor), we could solve a real system of dimension
100000 × 100000 in 12118 seconds.

Mariana Kolberg, Walter Krämer, Michael Zimmer Efficient parallel linear dense interval system solvers



Introduction
Tools

Parallelization
Results

Summary

PC cluster
ALICEnext
XC6000
JUMP

Hardware:

14 nodes with 32 IBM Power6 4.7GHz processors

Memory: 14 × 128 Gigabyte

Infiniband network

Software:

OS: AIX 5.3

IBM Compiler XLC

Mariana Kolberg, Walter Krämer, Michael Zimmer Efficient parallel linear dense interval system solvers



Introduction
Tools

Parallelization
Results

Summary

PC cluster
ALICEnext
XC6000
JUMP

Hardware:

14 nodes with 32 IBM Power6 4.7GHz processors

Memory: 14 × 128 Gigabyte

Infiniband network

Software:

OS: AIX 5.3

IBM Compiler XLC

Mariana Kolberg, Walter Krämer, Michael Zimmer Efficient parallel linear dense interval system solvers



Introduction
Tools

Parallelization
Results

Summary

PC cluster
ALICEnext
XC6000
JUMP

Hardware:

14 nodes with 32 IBM Power6 4.7GHz processors

Memory: 14 × 128 Gigabyte

Infiniband network

Software:

OS: AIX 5.3

IBM Compiler XLC

Mariana Kolberg, Walter Krämer, Michael Zimmer Efficient parallel linear dense interval system solvers



Introduction
Tools

Parallelization
Results

Summary

PC cluster
ALICEnext
XC6000
JUMP

Hardware:

14 nodes with 32 IBM Power6 4.7GHz processors

Memory: 14 × 128 Gigabyte

Infiniband network

Software:

OS: AIX 5.3

IBM Compiler XLC

Mariana Kolberg, Walter Krämer, Michael Zimmer Efficient parallel linear dense interval system solvers



Introduction
Tools

Parallelization
Results

Summary

PC cluster
ALICEnext
XC6000
JUMP

Hardware:

14 nodes with 32 IBM Power6 4.7GHz processors

Memory: 14 × 128 Gigabyte

Infiniband network

Software:

OS: AIX 5.3

IBM Compiler XLC

Mariana Kolberg, Walter Krämer, Michael Zimmer Efficient parallel linear dense interval system solvers



Introduction
Tools

Parallelization
Results

Summary

PC cluster
ALICEnext
XC6000
JUMP

K = 2, well conditioned real system

Time in s P=20 P=50 P=100

n = 10000 95.8 44.4 30.7

n = 25000 1265.9 552.8 289.8

n = 50000 - - 2130.0

Speed Up P=20 P=50 P=100

n = 10000 - 86.3% 62.4%

n = 25000 - 91.6% 87.4%

n = 50000 - - -

Speed Up is given as percentage of theoretical optimum
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Fast and very accurate verified solvers in C-XSC.

Efficient parallelization.

Parallel solvers can solve very large dense systems.

Tested with satisfying results (performance and accuracy)
on very different architectures.

Outlook
Solvers for sparse systems.
Use of OpenMP for dot products in parallel solvers(?)
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Thank you
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