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1 Introduction

This paper deals with numerical approximation of optimal control problems for het-
erogeneous systems by generalized Newton’s method (SQP method, see e.g. [1, 3]).
The main concern is to establish error estimates, and moreover, such estimates that
reveal the advantage of using appropriate second order discretization schemes. In this
respect the main result in the paper is new even in the special case of an ordinary con-
trol system, but the presence of integral relations in the heterogeneous systems creates
essential additional difficulties.

Problems of control of heterogeneous system arise in many areas, especially in pop-
ulation biology, economics and social sciences. A heterogeneous control system can
be viewed as a parameterized (infinite) family of ordinary control systems, coupled
together by some aggregated quantities (called externalities in economic context) on
which the dynamics of the individual control systems depends. Formally, these are
infinite-dimensional control systems with a nonlocal dependence on the spacial vari-
able (the latter being the parameter of heterogeneity). The meaning of the parameter
of heterogeneity could be: age or duration (in population or vintage capital models),
propensity to risky behavior (in social and epidemiplogical models), etc. We refer to
[9] for an extended bibliography.

A general heterogeneous control problem P is formulated in Section 2, where also
a necessary and a sufficient optimality conditions are presented. As usually these
conditions have the form of variational inequalities (generalized equations) E to which
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we apply the Newton method. The sufficient condition implies also Lipschitz stability
of the problem P which is a key supposition for the error analysis.

In Section 3 we present a version of the Newton method for abstract generalized equa-
tions and a corresponding error estimate adapted from [5]. The principle conditions
for consistency and stability are involved.

Section 4 describes the implementation of the generalized Newton method to our con-
trol problem. The differential equation is discretized by a second order Runge-Kutta
scheme, which leads to a discrete-time optimal control problem PN . In order to obtain
a discrete version, EN , of the generalized equations E we use appropriate approxima-
tions to the adjoint differential equation and to the variational part of the optimality
conditions E . These approximations are designed in such a way that EN represents
exactly the system of necessary conditions (discrete maximum principle) for PN . This
allows us to deduce in Section 5 the Lipschitz stability of EN (required by the abstract
convergence result) as a consequence of the Lipschitz stability of P . Following ideas
from [6] we estimate the order of consistency of the approximation EN to E , which
turns out to be higher than first (typically second), under mild regularity conditions.
In particular, the optimal control is assumed only Lipschitz continuous and may have
points of nondifferentiablity, which usually exist in presence of control constraints. In
Section 5 we formulate also our main result – the error estimate of the method.

2 The General Model and the Optimality Condi-

tions

The general model of a heterogeneous optimal control systems that we consider in this
paper has the form

min
∫

P
l(x(T, p)) dp +

∫ T

0

∫
P

L(x(t, p), y(t, p), u(t, p)) dp dt, (1)

ẋ(t, p) = f(x(t, p), y(t, p), u(t, p)), x(0, p) = x0(p), (2)

y(t, p) =
∫

P
g(p, x(t, q), y(t, q), u(t, q)) dq, (3)

u(t, p) ∈ U,

where t ∈ [0, T ] is interpreted as time, and “dot” means differentiation with respect to
t, the parameter p ∈ P is finite-dimensional, x ∈ Rn is the state variable, y ∈ Rm is
an aggregated state variable, u ∈ Rr is a control, x0 is a given initial condition. The
functions f , g, l, and L are defined in the respective spaces.
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We mention that an explicit dependence on t and p of the functions involved can be
easily included by introducing two additional state variables.

We shall use the following function spaces:
X – the space of functions x : [0, T ]× P 7→ Rn such that for a.e. p the function x(·, p)
is Lipschitz continuous uniformly in p, and for every t the function x(t, ·) belongs to
L∞(P ;Rn) ;
X0 – the subset of X consisting of those x which satisfy x(0, ·) = x0(·);
Y – the space L∞([0, T ]× P ;Rm);
U = {u ∈ L∞([0, T ]× P ;Rr) : u(t, p) ∈ U for a.e. (t, p)};
S = X0 × Y × U .

Suppositions:
(A1) U is convex and compact, P is compact and Lebesgue measurable, meas(P ) > 0,
x0 ∈ L∞(P );
(A2) all derivatives up to order two of the functions f , g, l and L, with respect to x, y
and u, exist and are locally Lipschitz continuous (uniformly in p, if g is concerned); g is
differentiable with respect to p and the derivative is locally Lipschitz, locally uniformly
in (x, u);
(A3) For every x ∈ X , u ∈ U , equation (3) has a unique solution1 y(t, p)
= Υ(t, p, x(t, ·), u(t, ·)) in Y , where Υ depends Lipschitz continuously on x and u.

Given u ∈ U , it can be proved similarly as in [14] or [2, Lemma 5.3] that a solution to
(2),(3) exists locally in t, and can be extended as long as ‖x(t, ·)‖∞ does not escape to
infinity. If for u ∈ U the solution (x, y) exists on [0, T ] then s = (x, y, u) ∈ S is called
a control-trajectory triplet. The corresponding value of the objective function will be
denoted by J(u).

For a given reference control-trajectory triplet s = (x, y, u) ∈ S we define the adjoint
equation

−ξ̇(t, p) = ξ(t, p)fx(s(t, p)) +
∫

P
η(t, q)gx(q, s(t, p)) dq + Lx(s(t, p)), (4)

ξ(T, p) = lx(x(T, p)),

η(t, p) = ξ(t, p)fy(s(t, p)) +
∫

P
η(t, q)gy(q, s(t, p)) dq + Ly(s(t, p)). (5)

Everywhere in the paper subscripts that have no meaning of natural numbers denote
differentiation with respect to the specified variable. Obviously the above system can
be viewed as a distributed parameter system, where the state space is L∞(P ;Rn) ×

1In most of the applications the author knows, the function g is either independent of y, or has a
cascade form: the first component of g does not depend on y, the second may depend on y1 only, and
so on. In this case (A3) is certainly fulfilled.
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L∞(P ;Rm). We take this into account in the next definition. For z = (s, ξ, η) ∈
L∞(P ;Rn ×Rm ×Rr)× L∞(P ;Rn)× L∞(P ;Rm) 7→ R we define the Hamiltonian

H(z) =
∫

P

[
ξ(p)f(s(p)) +

∫
P

η(q)g(q, s(p)) dq + L(s(p))
]

dp.

Here and below ξ(p) and η(p) are considered as vector-rows while the primal variables
x(p), y(p) and u(p) are columns, so that the multiplication in the above expression is,
in fact, the scalar product.

For z and ∆z as in the definition of H we introduce the following notations:

Hs(z)(p) = ξ(p)fs(s(p)) +
∫

P
η(q)gs(q, s(p)) dq + Ls(s(p)),

Hξ(z)(p) = f(s(p)); Hη(z)(p) =
∫

P
g(p, s(q)) dq,

(Hz(z)∆z)(p) = Hs(z)(p)∆s(p) + ∆ξ(p)Hξ(z)(p) + ∆η(p)Hη(z)(p),

and also
(Hss(z)∆s)(p) := Hss(z)(p)∆s(p)

=
[
ξ(p)fss(s(p)) +

∫
P

η(q)gss(q, s(p)) dq + Lss(s(p))
]
∆s(p),

(Hξs(z)∆s)(p) = fs(s(p))∆s(p), (Hsξ(z)∆ξ)(p) = ∆ξ(p)fs(s(p)),

(Hηs(z)∆s)(p) =
∫

P
gs(p, s(q))∆s(q) dq, (Hsη(z)∆s)(p) =

∫
P

∆η(q)gs(q, s(p)) dq,

Hzs∆z = Hss∆s + Hξs∆ξ + Hηs∆η, Hzξ∆z = Hsξ∆s, Hzη∆z = Hsη∆s.

Clearly, the above notations can be interpreted also as derivative of H in the respective
function spaces. In particular, the following (formal) expansion holds

H(z + ∆z) = H(z) +
∫

P
(Hz(z)∆z)(p) dp

+
1

2

∫
P

[〈Hzs(z)∆z)(p), ∆s(p)〉+ 〈Hzξ(z)∆z)(p), ∆ξ(p)〉+ 〈Hzη(z)∆z)(p), ∆η(p)〉] dp.

Proposition 1 Let s = (x, y, u) ∈ S be a given reference control-trajectory triplet.
Then there exists a number ν > 0 such that for every admissible control ũ = u+∆u ∈ U
with ‖∆u‖∞ ≤ ν
(i) Equations (2),(3) have a (unique) solution x̃, ỹ on [0, T ]× P ;
(ii) One can represent x̃ = x + ∆x + o(‖∆u‖2

∞), ỹ = y + ∆y + o(‖∆u‖2
∞), where

∆s = (∆x, ∆y, ∆u) satisfies the linearized equations

∆xt(t, p) = fs(s(t, p))∆s(t, p), (6)

∆y(t, p) =
∫

P
gs(p, s(t, q))∆s(t, q) dq; (7)
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(iii) The adjoint system (4),(5) corresponding to s has a unique solution (ξ, η), and

J(u + ∆u)− J(u) =
∫ T

0

∫
P

Hu(z(t, ·))(p)∆u(t, p) dp dt (8)

+
1

2

∫ T

0

∫
P
〈Hss(z(t, ·))(p)∆s(t, p), ∆s(t, p)〉 dp dt

+
1

2

∫
P
〈lxx(x(T, p))∆x(T, p), ∆x(T, p)〉 dp

+ o(‖∆u‖2
L2

).

The first claim of the proposition, as well as the estimation

‖∆x‖∞ + ‖∆y‖∞ ≤ C‖∆u‖∞

(from which it follows, having in mind the local existence) can be proven similarly as
[9, Proposition 1]. The proof of the existence and uniqueness of the solution of the
adjoint system employs a standard fixed-point argument and is similar to that of [2,
Lemma 5.2] or [9, Proposition 2]. The proof of (8) follows the line of proof of the
similar claim concerning usual optimal control systems, therefore is omitted.

As a direct consequence we obtain a necessary optimality condition in the form of local
maximum principle2.

Theorem 1 If s ∈ S is optimal, then the adjoint system corresponding to s has a
unique solution (ξ, η) ∈ X × Y, and it satisfies for a.e. (t, p)

Hu(z(t, ·))(p) ∈ −NU(u(t, p)), (9)

where

NU(v) =

{
∅ if v /∈ U,
{ν : 〈ν, w − v〉 ≤ 0 for all w ∈ U} if v ∈ U.

is the normal cone to U at v.

Coercivity: We say that the system is coercive at s if there exists ρ > 0 such that
for every ∆u ∈ U − U and corresponding solution ∆s = (∆x, ∆y, ∆u) of (6),(7) with
∆x(0, ·) = 0 it holds that∫

P
〈lxx(x(T, p))∆x(T, p), ∆x(T, p)〉dp +

∫ T

0

∫
P
〈Hss(z(t, ·))(p)∆s(t, p), ∆s(t, p)〉dp dt

≥ ρ‖∆u‖2
L2

.

The following is another consequence of Proposition 1.

2In fact a global maximum principle also holds and can be proven by the method of needle variations
for infinite dimensional control systems, see e.g. [7, 8].
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Theorem 2 Let (A1)–(A3) and Coercivity hold at z ∈ S. Let, moreover, z satisfy the
minimum principle (9). Then s is locally (in L∞) optimal.

The primal/dual system and the maximum principle can be rewritten as the following
generalized equations3 with respect to s ∈ S, (ξ, η) ∈ X × Y :

0 = −ẋ(t, p) + Hξ(z(t, ·))(p), (10)

0 = −y(t, p) + Hη(z(t, ·))(p), (11)

0 = ξ̇(t, p) + Hx(z(t, ·))(p), (12)

0 = −ξ(T, p) + lx(x(T, p)), (13)

0 = −η(t, p) + Hy(z(t, ·))(p), (14)

0 ∈ Hu(z(t, ·))(p) + NU(u(t, p)). (15)

These generalize equations will be approached by a version of the Newton method that
will be presented in an abstract setting in the next section.

3 Newton’s Method for Generalized Equations

In this section we adapt some of the results from [5] concerning the convergence of the
Newton method applied to generalized equations.

Let Z and D be two subsets of Banach spaces, and let Z be closed and convex. We
consider the generalized equation

0 ∈ F (z) + W (z), (16)

where F : Z 7→ D is a single-valued and W : Z ⇒ D is a set-valued mapping,
respectively. The Newton method will not be applied directly to this inclusion, rather,
to an “approximate” inclusion, presumably in finite-dimensional spaces. For this reason
we consider sequences of subsets ZN and DN of linear spaces, with closed and convex
ZN , sequences of mappings FN and WN , and a “projection” πN : Z 7→ ZN , as the
following diagram shows:

Z
F,W−→ D

πN ↓
ZN

FN ,WN−→ DN .

The Newton method applied to the generalized equation

0 ∈ FN(z) + WN(z) (17)

3The term “generalized” refers to the fact that the last relation is an inclusion rather than an
equation.
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consists of the following: if zk is the current iterate, the next iterate zk+1 is found from
the “linearized” equation

0 ∈ FN(zk) + F ′
N(zk)(zk+1 − zk) + WN(zk+1), k = 0, 1, . . . . (18)

Such a sequence will be called Newton sequence.

We shall use the notation Bβ(z) := {z′ ∈ Z : ‖z′ − z‖ ≤ β}, for a ball in Z, and
similarly in the other spaces involved. Moreover, denote

GN(z̄; z) := FN(z̄) + F ′
N(z̄)(z − z̄).

We shall suppose the following.

(B1) (Existence) Inclusion (16) has a solution ẑ;
(B2) (Smoothness) For every N the function FN is Frechét differentiable in Bβ(πN(ẑ))
(for some β > 0 and the derivative F ′

N is locally Lipschitz with a constant M indepen-
dent of N ;
(B3) (Consistency) There is a sequence dN ∈ FN(πN(ẑ)) + WN(πN(ẑ)) such that
‖dN‖ −→ 0 with N → +∞.

Define the set-valued map ΓN : DN ⇒ ZN as the inverse of the map z −→ GN(πN(ẑ); z)+
WN(z). That is,

z ∈ ΓN(d) ⇐⇒ d ∈ GN(πN(ẑ), z) + WN(z).

Clearly πN(ẑ) ∈ ΓN(dN). The next supposition requires existence of Lipschitz localiza-
tion [12] of ΓN around (dN , πN(ẑ)).

(B4) (Stability) There exist positive numbers β, δ, and L such that the map d −→
ΓN(d)∩Bβ(πN(ẑ)) is single-valued and Lipschitz continuous with constant L in Bδ(dN).

The next theorem follows from the results in [5, Section 3].

Theorem 3 For every L′ > L and q ∈ (0, 1)
there exist δ > 0 and N0 such that if N ≥ N0, then (17) has a unique solution ẑN in
Bδ(πN(ẑ)), and

‖ẑN − πN(ẑ)‖ ≤ L′‖dN‖.
Moreover, for every z0

N ∈ Bδ(πN(ẑ)) there is a unique Newton sequence zk
N ∈ Bδ(πN(ẑ)),

namely satisfying
0 ∈ GN(zk

N ; zk+1
N ) + WN(zk+1

N ),

and it holds that
‖zk

N − ẑN‖ ≤ q2k−1‖z0
N − ẑN‖.
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4 Implementation for Control of Heterogeneous Sys-

tems

As a consequence of Theorem 3 we obtain the inequality

‖zk
N − ΠN(ẑ)‖ ≤ q2k−1‖z0

N − zN‖+ L′‖dN‖. (19)

The first term in the right-hand side converges quadratically to zero, while the second
one depends on the order of consistency of the approximation and on the choice of
N . In the implementation below N will be the cardinality of the discretization mesh
along the time and along each of the dimensions of the parameter space P . Then
the size of the problem (17) is proportional to Ndim(p)+1. Therefore one should look
for an approximation with high order of consistency in order to achieve a reasonable
accuracy ‖dN‖ for numerically still tractable values of N . As we shall argue in the
end of the next section, for general control constrained problems one cannot achieve
better order than second (that is, ‖dN‖ ≤ const/N2) by means of Runge-Kutta-type
discretization schemes. A second order consistency, however, could be achieved by a
variety of Runge-Kutta schemes. To keep the exposition shorter we shall demonstrate
this using a particular second order Runge-Kutta scheme known as Heun scheme4. In
addition, we shall suppose that g is independent of y. In the case where g has a cascade
form (see footnote 1) the construction of the approximating equations below is exactly
the same, but in the general case equations (3) and (5) require respective solvers. Also,
we take L = 0, which is not a restriction, since a nonzero L can be included in this
framework by introducing in a standard way an additional variable. We formulate
these additional suppositions as

(A3′) g is independent of y and L = 0.

Having in mind the generalized equations in the end of Section 2 we define the spaces

Z = {z = (x, y, u, ξ, η) ∈ X0×Y×U×X ×Y}, D = Ln
∞×Lm

∞×Ln
∞×Rn×Lm

∞×Lr
∞,

where the spaces L∞ are all taken on [0, T ]× P . As above we abbreviate s = (x, y, u).

Now we shall define the discrete space ZN and the projection πN . We take a natural
number N and denote h = T/N and ti = ih. Moreover we fix a net PN ⊂ P
(presumably an h-net) that will be used for numerical integration over P . For an
element z = (x, y, u, ξ, η) ∈ Z we denote for i = 0, . . . N − 1 and p ∈ PN

zi(p) = (xi(p), yi(p), u′i(p), u′′i (p), ξi(p), ηi(p))
def
= (x(ti, p), y(ti, p), u(ti, p), u(ti+1, p), ξ(ti+1, p), η(ti, p)).

4As we show in [6], not every Runge-Kutta scheme that is consistent of second order with smooth
differential equations provides second order consistency with “smooth” optimal control problems.
Additional requirements for the coefficients of the scheme arise in the control case, which however,
are satisfied for the Heun scheme.
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We denote also zN(p) = xN(p)
def
= x(tN , p). Thus each zi(·), i = 0, . . . , N is a vector

function defined on PN . Then we define for z ∈ Z

πN(z) = (z0(·), . . . , zN(·)). (20)

The set ZN will consist of all vector functions on PN with the structure of πN(z). That
is, ZN contains the image of πN , but also the elements like in (20) in which u′i(p) is
not necessarily equal to u′i−1(p). Clearly, this is a finite dimensional space since PN is
a finite set5. We endow ZN with the discrete L∞-norm.

We shall postpone the definition of the space DN and the respective norm to the next
section. First we give the reader a better intuition, by informally discretizing the
problem (1),(2),(3) using a “heuristic” argument.

We introduce a linear “integrator” based on PN , namely IN is a linear mapping from
the functions g : P 7→ Rm to Rm depending only on the values of g at the points in
PN , and for every integrable function g : P 7→ Rm

IN(g) =
∑

p∈PN

αpg(p) ≈
∫

P
g(q) dq,

where αp > 0. The meaning of “≈” will be specified in the next section, but IN is
presumably a cubature formula based on PN .

The Heun scheme applied to a differential equation λ̇ = b(t, λ) is given by

λi+1 = λi + 0.5h[b(ti, λi) + b(ti+1, λi + hb(ti, λi)].

In the case of equation (2) the calculation of the second term would involve the value
y(ti+1, p) ≈ yi+1(p), which requires the values of xi+1(·). This implicit feature can be
avoided by using a predictor Euler step for x which allows calculation of xi+1(·) with
(formal) error O(h2). The resulting formulas become: for i = 0, . . . , N − 1

xi+1(p) = xi(p) + 0.5h[f(si(p)) + f(s̃i(p))], (21)

yi(p) = IN(g(p, si(·)), x0(·) – given, (22)

where we use the abbreviations

si(p) =

 xi(p)
IN(g(p, xi(·), u′i(·))

u′i(p)

 , s̃i(p) =

 xi(p) + hf(si(p))
IN(g(p, xi(·) + hf(si(·)), u′′i (·))

u′′i (p)

 .

5For a more general Runge-Kutta scheme the number of independent discrete controls
u′

i(p), u′′
i (p), . . . arising in one time step [ti, ti+1] and for a fixed p ∈ PN equals the number of differ-

ent intermediate times that the scheme involves (they all should belong to [ti, ti+1]). For the Heun
scheme these are ti and ti+1, therefore two discrete control values are associate to each [ti, ti+1] and
each p ∈ PN .

9



Equations (21), (22) will be the approximate versions of equations (10) and (11). To
obtain appropriate approximations to the rest of the (generalized) equations in (10)–
(15) we proceed as follows. We consider the discrete-time discrete-parameter problem

minimize IN(l(xN(·))) (23)

subject to (21), (22) and u′i(p), u′′i (p) ∈ U for p ∈ PN . Applying the discrete minimum
principle (and having in mind the linearity of the operator IN) one can obtain the
following adjoint equations for i = 0, . . . , N − 1

ξi−1(p) = ξi(p) +
h

2
[ξi(p) (fx(si(p)) + fx(s̃i(p))(1 + hfx(si(p)))) (24)

+ IN (ξi(·)fy(s̃i(·))gx(·, s̃i(p))) (1 + hfx(si(p))) + 2IN (ηi(·)gx(·, si(p)))],

ξN−1(p) = IN(lx(xN(·))), (25)

ηi(p) = 0.5
[
ξi(p) (1 + hfx(s̃i(p))) + hIN (ξi(·)fy(s̃i(·))gx(·, s̃i(p)))

]
fy(si(p)),(26)

and conditions for minimum for i = 0, . . . , N − 1

0.5
(
ξi(p)(1 + hfx(s̃i(p)) + hIN(ξi(·)fy(s̃i(·))gx(·, s̃i(p)))

)
fu(si(p)) (27)

+ IN (ηi(·)gu(·, si(p))) ∈ NU(u′i(p)),

ξi(p)fu(s̃i(p)) + IN (ξi(·)fy(s̃i(·))gu(·, s̃i(p))) ∈ NU(u′′i (p)), (28)

where “1” means the identity matrix with an appropriate dimension.

Remark 1 Notice, that given the discrete control (u′i(·), u′′i (·)), i = 0, . . . , N − 1 and
x0(·), one can successively determine (left to right) the discrete trajectories xi(·) and
yi(·) for all i. Then one can successively determine (right to left) the corresponding dual
variables. Then from the conditions for minimum one can determine “next” controls
(or the gradient of the discrete objective function with respect to the control). This
makes it possible to apply an iterative (or gradient) method for solving the discrete
problem, but in this paper we are interested in the Newton method and this observation
is not of principle importance, as it is if a gradient method would be applied.

The above system of generalized equations can be formulated in a compact form
using the following discrete-time Hamiltonian HN defined for the components z =
(xi, yi, u

′
i, u

′′
i , ξi, ηi), i = 0, . . . , N − 1 of any element zi ∈ ZN :

HN(zi(·)) = 0.5IN
(
ξi(·)(f(si(·)) + f(s̃i(·))) + ηi(·)IN(g(·, si(··))

)
,

where “·” is the dummy argument of the outer summation IN , and “··” is the dummy
argument of the inner summation IN . The equations (21),(22),(24)–(28) obtained
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above for z ∈ ZN can be rewritten in the following way: for i = 0, . . . , N − 1 and
p ∈ PN

0 = −xi+1(p)− xi(p)

h
+

1

αp

∂

∂ξ(p)
HN(zi(·)), (29)

0 = −yi(p) +
1

αp

∂

∂η(p)
HN(zi(·)), x0(·) – given, (30)

0 =
ξi(p)− ξi−1(p)

h
+

1

αp

∂

∂x(p)
HN(zi(·)), (31)

0 = −ξN−1(p) + lx(xN(p)) (32)

0 = − 1

αp

ηi(p) +
1

αp

∂

∂y(p)
HN(zi(·)), (33)

0 ∈ − ∂

∂u′(p)
HN(zi(·)) + NU(u′i(p)), (34)

0 ∈ − ∂

∂u′′(p)
HN(zi(·)) + NU(u′′i (p)). (35)

It will be convenient to use the notations:

HN
x(p)(zi(·)) =

1

αp

∂

∂x(p)
HN(zi(·)), . . . , HN

η(p)(zi(·)) =
1

αp

∂

∂η(p)
HN(zi(·)),

while the second subscript of HN that appears below means true differentiation.

The above system represents the generalized equation (17) in the general formulation of
the Newton method. According to Section 3, the generalized Newton method consists
of the following: given the current iteration zk(·) ∈ ZN the next iteration zk+1 is found
as a solution of the following “linearized” inclusion (18):

0 = −(xi+1(p)− xi(p))/h + HN
ξ(p)(z

k
i (·)) + HN

ξ(p),z(p)(z
k
i (·))(zi(p)− zk

i (p)),

0 = −yi(p) + HN
η(p)(z

k
i (·)) + HN

η(p),z(p)(z
k
i (·))(zi(p)− zk

i (p)),

0 = (ξi(p)− ξi−1(p))/h + HN
x(p)(z

k
i (·)) + HN

x(p),z(p)(z
k
i (·))(zi(p)− zk

i (p)),

0 = −ξN−1(p) + lx(x
k
N(p)) + lxx(x

k
N(p))(xN(p)− xk

N(p)),

0 = −ηi(p) + HN
y(p)(z

k
i (·)) + HN

y(p),z(p)(z
k
i (·))(zi(p)− zk

i (p)),

0 ∈ HN
u′(p)(z

k
i (·)) + HN

u′(p),z(p)(z
k
i (·))(zi(p)− zk

i (p)) + NU(u′i(p)),

0 ∈ HN
u′′(p)(z

k
i (·)) + HN

u′′(p),z(p)(z
k
i (·))(zi(p)− zk

i (p)) + NU(u′′i (p)).

As above, the subscripts of HN denote partial differentiation. As we see in the next
section, the last system coincides with the necessary (and sufficient, under the suppo-
sitions in the next section) condition for optimality for a linear-quadratic discrete-time
optimal control problem, it could be solved by linear-quadratic programming. But the
main concern of this paper is the error analysis, therefore we omit the details of the
algorithmic realization.
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5 Error Analysis

In this section we shall ensure that conditions (B1)–(B4) of the abstract Theorem 3 are
satisfied, and shall give (rather non-restrictive) conditions under which the discretiza-
tion error (the second term in the right-hand side of (19) is of second order with respect
to the step size.

First of all we specify the space DN . In accordance with (29)–(35) we denote

di = (dx
i , d

y
i , d

ξ
i , d

η
i , d

u′

i , du′′

i )

and define
DN = {d = (d0, . . . , dN−1, d

ξ
N) :

di ∈ Ln
1,∞×Ln

∞,∞×Ln
1,∞×Ln

∞,∞×Ln
∞,∞×Ln

∞,∞, i = 0, . . . , N −1 and dξ
N ∈ Ln

∞},
where the discrete L1,∞-spaces (we use calligraph L to distinguish from the the con-
tinuous L-spaces) is endowed with the norm

‖(dx
0(·), . . . , dx

N(·))‖1,∞ = h
N∑

i=1

max
p∈PN

|dx
i (p)|,

Verification of (B1). To ensure (B1) we suppose

Existence. The problem (1)–(3) has a solution (x̂, ŷ, û) = ẑ ∈ Z.

Verification of (B2). These conditions follow from (A1) since the mapping F is defined
by (the single-valued part of) the right-hand side of (10)–(15).

Verification of (B3). We have to estimate what is the residual d in (29)–(35) if we sub-
stitute (z0(·), . . . , zN(·)) = πN(ẑ). To do this we need the next notion and supposition.

For a function v : [0, T ] 7→ Rr we denote by ω(v, [0, T ]; t, h) the modulus of continuity

ω(v, [0, T ]; t, h) = sup{|v(t′)− v(t′′)| : t′, t′′ ∈ [t− h/2, t + h/2] ∩ [0, T ]}.

The average modulus of smoothness of v on [0, T ] is defined as

τ(v; h) =
∫ T

0
ω(v, [0, T ]; t, h) dt.

If v is defined almost everywhere, then by definition τ(v; h) is the infimum of the
averaged moduli of all extensions of v to [0, T ].

In the next supposition we restrict ourselves to the case of an one-dimensional param-
eter p. The higher dimensional case requires more complicated considerations from the

12



theory of cubature formulae in which also the geometry of P should be involved in the
regularity conditions below.

Regularity. For every p ∈ P the function û(·, p) is Lipschitz continuous uniformly in
p. Moreover, P = [0, κ] ⊂ R and for every t ∈ [0, T ] the function û(t, ·) is Lipschitz
continuous uniformly in t. Accordingly, we suppose that PN is the mesh in P that splits
it into N equal intervals, and that IN is any composite linear quadrature formula which
is exact for linear functions.

We denote

τ t(ût; h) = sup
p∈P

τ(ût(·, p); h), τ p(ûp; h) = sup
t∈[0,T ]

τ(ûp(t, ·); h),

where ut and up are the derivatives with respect to t and p.

The next lemmas, which follow from results in [13], are used repeatedly in the analysis
of the residual.

Lemma 1 There exists c such that for every v ∈ W 1,∞([0, T ];Rr) and for every h ∈
(0, T ] ∣∣∣∣∣

∫ h

0
v(s) ds− h

2
(v(0) + v(h))

∣∣∣∣∣ ≤ ch
∫ h

0
ω(v̇, [0, h]; t, h) dt.

Lemma 2 There exists c such that for every v ∈ W 1,∞([0, T ];Rr) and for every h ∈
(0, T ] ∣∣∣∣IN(v)−

∫
P

v(q) dq

∣∣∣∣ ≤ cτ(v̇; h).

The next lemma verifies (B3) and estimates the residual dN in (19).

Lemma 3 Let z = πN(ẑ) be substituted in the right-hand side of (29)–(35). Then
there is a constant c (independent of N) such that the image d satisfies

‖d‖ ≤ ch(h + τ t(ût; h) + τ p(ûp; h)).

Proof. Clearly (32) follows from (13), therefore dξ
N = 0. Moreover, the estimation for

dy follows from (11) and (2). Each of the five remaining residuals has to be estimated

13



separately. The next two estimates follow from the first order Taylor expansion and
Lemma 2 and are repeatedly used in the proof:

|s̃i(p)− si+1(p)| ≤ ch(h + τ p(ûp; h)), (36)

|ξ(ti, p)− ξ(ti+1, p)(1 + hfx(s(ti+1, p))− h
∫

P
ξ(ti+1, q)fy(s(ti+1, q))gx(q, s(ti+1, p)) dq

≤ ch(h + τ p(ûp; h)). (37)

We shall present the estimation for dξ and skip the rest of the calculations. In the next
formulas we shall skip the “hat” in the notation of the optimal solution. Using the
explicit version (24) of (32), the estimation (36) and Lemma 2 we have

dξ
i = (−ξi−1(p) + ξi(p))/h +

1

2
ξi(p) (fx(si(p)) + fx(s̃i(p))(1 + hfx(si(p)))

+
1

2
IN (ξi(·)fy(s̃i(·))gx(·, s̃i(p))) (1 + hfx(si(p)))) +

1

2
IN (ηi(·)gx(·, si(p)))

= (ξ(ti+1, p)− ξ(ti, p))/h

+
1

2
[ξ(ti+1, p)fx(s(ti, p)) + ξ(ti+1, p)fx(s(ti+1, p)) + hξ(ti+1, p)fx(s(ti+1, p))fx(s(ti, p))

+
∫

P
ξ(ti+1, q)fy(s(ti+1, q))gx(q, s(ti+1, p)) dq

+h
∫

P
ξ(ti+1, q)fy(s(ti+1, q))gx(q, s(ti+1, p)) dqfx(s(ti, p))

+
∫

P
η(ti, q)gx(q, s(ti, p)) dq + ON

]
=

1

h

∫ ti+1

ti
ξ̇(t, p) dt− 1

2
ξ̇(ti+1, p) +

1

2
[ξ(ti+1, p)(1 + hfx(s(ti+1, p))

+h
∫

P
ξ(ti+1, q)fy(s(ti+1, q))gx(q, s(ti+1, p)) dq

]
fx(s(ti, p))

+
1

2

∫
P

η(ti, q)gx(q, s(ti, p)) dq + ON ,

where ON is estimated by ch(h+τ p(ûp; h)). Then using (37) and Lemma 2 we conclude
that

dξ
i =

1

h

∫ ti+1

ti
ξ̇(t, p) dt− 1

2
ξ̇(ti+1, p) +

1

2

[
ξ(ti, p)fx(s(ti, p)) +

∫
P

η(ti, q)gx(q, s(ti, p)) dq
]

+ ON

=
1

h

∫ ti+1

ti
ξ̇(t, p) dt− 1

2
[ξ̇(ti+1, p) + ξ̇(ti, p)] + ON = O′

N ,

where

|O′
N | ≤ ch(h + τ p(ûp; h)) + c

∫ ti+1

ti
ω(ût, [ti, ti+1]; t, h) dt,

according to Lemma 1. Summing in i we obtain the claim of the lemma. Q.E.D.
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Verification of (B4). We only sketch this part, since the details become too long. Below
we denote z̄i(p) = πN(ẑ)i(p) and abbreviate

σ̄i(p) = (x̄i(p), ȳi(p), ū′i(p), ū′′i (p)), σi(p) = (xi(p), yi(p), u′i(p), u′′i (p)).

Following the argument in [4, Lemma 11] and [6, Lemma 6.1] one can prove (and this is
the main difficulty) that Coercivity implies similar property for the discretized system.
Namely, for all sufficiently small h > 0 the inequality

∑
p∈PN

[
〈lxx(x̄N(p))∆xN(p), ∆xN(p)〉+ h

N−1∑
i=0

〈HN
s(p),s(p)(z̄i(·))∆si(p), ∆si(p)〉

]
(38)

≥ 1

2
ρ

∑
p∈PN

N−1∑
i=0

((∆u′i(p))2 + (∆u′i(p))2).

holds for every discrete controls ∆u′i(p), ∆u′′i (p) ∈ U−U and the corresponding solution
∆xi(p), ∆yi(p) of the linear discrete-time system

(∆xi+1(p)−∆xi(p))/h = HN
ξ(p),σ(p)(z̄i(·))∆σi(p),

∆yi(p) = HN
η(p),σ(p)(z̄i(·))∆σi(p)

where ∆σi = (∆xi, ∆yi, ∆u′i, ∆u′′i ).

Then we utilize the approach from [11] and [4]. In order to prove (B4) we have to
consider the system in the end of Section 4 with zk

i (·) replaced by z̄i(·) and with a
disturbance d ∈ DN instead of 0. (For further reference we call this system (DLS).)
One can verify that the obtained in this way system represents the necessary optimality
condition for the following linear-quadratic problem:

min

∑
p∈P

〈
lxx(x̄N(p))(xN(p)− x̄N(p)) + lx(x̄N(p))− dξ

N , xN(p)− x̄N(p)〉

+
N−1∑
i=0

∑
p∈P

〈HN
σ(p),σ(p)(z̄i(·))(σi(p)− σ̄i(p)) + HN

σ(p)(z̄i(·))− dσ
i (p), σi(p)− σ̄i(p)

〉 ,

subject to

(xi+1(p)− xi(p))/h = HN
ξ(p),σ(p)(z̄i(·))(σi(p)− σ̄i(p)) + HN

ξ(p)(z̄i(·))− dx
i (p),

yi(p) = HN
η(p),σ(p)(z̄i(·))(σi(p)− σ̄i(p)) + HN

η(p)(z̄i(·))− dy
i (p),

u′i(p), u′′i (p) ∈ U.

According to [11, Lemma 4] the coercivity condition (38) implies that the primal/dual
solution z ∈ ZN of the above linear-quadratic problem depends in a Lipschitz way on
the disturbance d ∈ DN . Moreover, under the coercivity this primal/dual solution is
exactly the solution of the generalized equation (DLS), which proves (B4).

Getting all together we obtain the following theorem.
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Theorem 4 Suppose that (A1), (A2), (A3’), Existence, Regularity and Coercivity (see
Section 2 for the last) are fulfilled. Let q ∈ (0, 1). There exist δ > 0 and N0 such that if
N > N0 and the initial iteration z0 satisfies ‖z0−πN(ẑ)‖ ≤ δ, then the generalized New-
ton scheme introduced in Section 4 generates a unique sequence zk = (zk

0 (·), . . . , zk
N(·))

and

max
p∈PN

|xk
N(p)− x̂(T, p)| + max

i=0,...,N−1
max
p∈PN

[
|xk

i (p)− x̂(ti, p)|+ |yk
i (p)− ŷ(ti, p)|

+ |u′ki − û(ti)|+ |u′′ki − û(ti+1)|
]

≤ q2k−1‖z0 − πN(ẑ)‖+ Ch(h + τ t(ût; h) + τ p(ûp; h)).

We mention that from [13, Sect. 1.3] it follows that τ t(ût; h) and τ p(ûp; h) converge
to zero with h if the derivatives ût and ûp are Riemann integrable, and τ t(ût; h) +
τ p(ûp; h) = O(h) if the two derivatives are of bounded variation. In the latter case the
estimate in Theorem 4 is O(h2). This is the usual case that arises in the applications
(excluding pathological examples). On the other hand, more regularity of the optimal
control than existence (almost everywhere) of a derivative with bounded variation is a
too strong supposition that typically fails in the case of constrained control. Therefore
higher than second order accuracy cannot be achieved in general by Runge-Kutta
discretization schemes.
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