
���������
	����	�������������������������������	����������	! 

"$# �%����&
	!�����������$	���'�	��$	��)(

Brigitte VERDONK, Johan VERVLOET1, Annie CUYT
Department of Mathematics and Computer Science

University of Antwerp, Middelheimcampus, Building G
Middelheimlaan 1, B2020 Antwerp, Belgium

{brigitte.verdonk,johan.vervloet,annie.cuyt}@ua.ac.be

AMS Subject Classification: 65G30, 65G99, 03C62
Keywords: interval arithmetic, inclusion property

Abstract.

In both [3] and [8], the authors review the implementation of the basic operations in interval arithmetic,
and in particular discuss the different approaches given in the literature for interval division when the
divisor interval contains zero. In these papers, and in the references therein, the basic operations are
defined for real or extended real interval operands.
Division by an interval containing zero is a special case of an interval function for which the input
arguments contain points outside the domain of the underlying point function. A number of approaches
exist in the literature [7, 12] to remove restrictions on the domain of interval functions and hence obtain
a closed, exception-free interval system.
In this paper we present an alternative approach to remove restrictions on the domain of interval
functions and to guarantee the inclusion property in all situations, even when some input intervals
contain points that lie outside the domain of the underlying point function. To achieve this, we allow
for the (efficient) set-based representation of non-real results. The computed intervals are sharp, yet
contain more information and the resulting interval system is closed and exception-free. We also
show how the presented ideas can be implemented in an interval arithmetic library. The performance
overhead is negligible compared to the fact that the implementation using the new approach offers
100% reliability in return.
The structure of the paper is as follows. We set off with a motivating example in Section 1. In
Section 2 we review various approaches to interval division and then introduce vset-division of real
intervals, based on the newly introduced concept of value set or vset. In Section 3 we give a formal
definition of real vset-intervals and arithmetic on these intervals. We prove a number of essential
properties and point out the likenesses and differences with other approaches. Finally, in Section 4,
we discuss the implementation of vset-interval arithmetic in a floating-point context.

1 Motivation.

It is well-known that without the proper handling of special cases, real floating-point arithmetic
and real floating-point interval arithmetic systems are not closed. Besides mathematically undefined
results, complex results can not be represented nor approximated in such systems. Programming
environments such as MATLAB and computer algebra systems, both of which are often used for pro-
totyping, automatically switch from real to complex mode when the mathematical result is complex.
This is not an option in typed programming languages and special values such as NaN, introduced in
the IEEE 754 standard for floating-point arithmetic [1], are needed to obtain a closed floating-point
system.
To obtain a closed system for interval arithmetic, several approaches have been proposed in the
literature [3, 8, 12]. These approaches compute comparable interval bounds for real results but in the
case of non-real results they often do not reflect all that is known about the interval-valued expressions.
Consider evaluating the function

g(x) =

√

1−
(

cosx

x− π

)2
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over the interval [3.14, 3.15]. Mathematically, we have that

x ∈ R :

(
cosx

x− π

)2

> 1 =⇒ g(x) ∈ C = C ∪ {∞}

g(π) = ∞

and so [3.14, 3.15] is not in the domain of g, when considered as a function from R to R. As will
become clear, how well g([3.14, 3.15]) can be computed/represented, is influenced by the programming
environment in which it is evaluated. In the most expressive programming environments, such as
computer algebra systems, we expect the full range of the function g over the interval to be returned.
We indeed find with Mathematica v4.0

g([3.14, 3.15]) =

√

1−
(

cos [3.14, 3.15]

[3.14, 3.15]− π

)2

=

√

1−
(

[−1.00,−9.99× 10−1]

[−0.002, 0.008]

)2

=

√
1− ([−∞,−118]∪ [627, +∞])2

=
√

1− [14146, +∞]

=
√

[−∞,−14145]

On the other hand, in the interval library INTLAB [9] for MATLAB, which is based on IEEE double
precision floating-point arithmetic, the result returned is

g([3.14, 3.15]) = NaN + NaN i

While this result is not informative, it is consistent with the underlying IEEE arithmetic. Indeed,
computing the range of g over the interval [3.14, 3.15] comes down to taking the square root of (finite
and infinite) negative arguments. For arguments x < 0, IEEE floating-point arithmetic, on which
MATLAB/INTLAB is based, states that

√
x = NaN.

If we use classical typed programming languages with real data types, we cannot expect the result
to be as expressive as in computer algebra systems. Using the SUN Forte compilers [10] which have
interval arithmetic built-in, we find

g([3.14, 3.15]) =

√

1−
(

cos [3.14, 3.15]

[3.14, 3.15]− π

)2

=

√

1−
(

[−1.00,−9.99× 10−1]

[−0.002, 0.008]

)2

=

√
1− [−∞, +∞]

2

=
√

1− [0, +∞]

=
√

[−∞, 1]

= [0, 1]

The interval [0, 1] which is returned, is the result of an overestimation of g([3.14, 3.15]) ∩ R = ∅: for
no x ∈ [3.14, 3.15] does g(x) belong to [0, 1]. Furthermore, since no exceptions are raised by the
SUN Forte compilers, the user is not aware that the result returned does not reflect the nature of the
mathematical result. Such an approach is fine if the user is only interested in real-valued results. The
purpose of this paper is to introduce a closed interval system in which the computed intervals are
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sharp yet contain more information, making our approach mathematically reliable yet implementable
in a typed programming language. To achieve this, we allow for an extended interval representation.
An interval is represented by its left and right endpoint and an additional parameter, which can be
represented with only few bits, to reflect any non-real results. Using this extended representation, we
find, when evaluating g([3.14, 3.15]):

g([3.14, 3.15]) =

√

1−
(

cos [3.14, 3.15]

[3.14, 3.15]− π

)2

=

√

1−
(

[−1.00,−9.99× 10−1]

[−0.002, 0.008]

)2

=

√
1− (]−∞, +∞[ ∪ {∞})2

=
√

1− [0, +∞[ ∪ {∞}
=

√
]−∞, 1] ∪ {∞}

= [0, 1] ∪ {C0,∞} C0 = C \ {0}

This result can be interpreted as follows: the real subset of g([3.14, 3.15]) is contained in [0, 1] and there
exists at least one x ∈ [3.14, 3.15] such that g(x) ∈ C0 \ R and at least one y ∈ [3.14, 3.15] such that
g(y) = ∞. That is, the true nature of the mathematical result is represented and no exceptions need
to be raised. In the next sections, we formalize the arithmetic on this extended interval representation,
which we refer to as value set (vset) intervals.

2 Interval division revisited.

Ever since interval arithmetic was introduced by R. Moore in [5], there have been several proposals
in the literature on how best to define division of intervals when the divisor contains 0. We refer to
[8] and [3] for good overviews. Division by an interval containing 0 is a very simple example of the
evaluation of an interval function in a point outside its domain, if we consider point-wise division as
a function from R2 to R. We therefore start our discussion by looking at different existing definitions
of interval division.
In the sequel of the text we shall distinguish between the affine extended real line RA = R∪{−∞, +∞}
and the projective extended real line RP = R ∪ {∞} and also refer to the extended complex plane as
C = C ∪ {∞}. With the usual notation

[a, b] = {x ∈ RA | a ≤ x ≤ b}
]a, b[ = {x ∈ RA | a < x < b}

we shall denote by If , the set of finite real intervals

If = {[a, b] | a, b ∈ R}

by Ir the set of real intervals

Ir = If ∪ {]−∞, b] | b ∈ R} ∪ {[a, +∞[ | a ∈ R} ∪ {]−∞, +∞[} (2.1)

and by Ie the set of extended real intervals

Ie = {[a, b] | a, b ∈ RA}

When the distinction between the different sets of intervals is not relevant, we shall simply use the

notation I. It is clear that If and Ir are subsets of 2R while Ie ⊂ 2RA .
Division is a special case of a binary function f with domain Df ⊂ R2. From [8] and [3] we recall the
two main definitions for interval division. From [12] we repeat the definition based on containment
sets. In these definitions, we need the concept of interval hull or hull for short.
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Definition 1

Let S be an arbitrary subset of R. The interval hull of S in the set of intervals I is defined as the
smallest element of I containing S.

It is clear that a similar definition can be given when S is a subset of RA. In that case I ≡ Ie.

Definition 2 [3]

Let X, Y ∈ Ir be real, non-empty intervals. Then we define

÷F : I2r −→ 2R

(X, Y ) −→ X ÷F Y = {z ∈ R | ∃x ∈ X, y ∈ Y \ {0}, z = x/y} (2.3a)

and the corresponding interval division

/F : I2r −→ Ir

(X, Y ) −→ X/F Y = hullIr
(X ÷F Y ) (2.3b)

As in [3], we shall refer to this division as functional division. It is clear from (2.3), that when X, Y ∈ Ir,
the set X ÷F Y is not necessarily a real interval. For example, [1, 1]÷F [−1, 1] = ]−∞,−1]∪ [1, +∞[.
In this case, the result of the interval division is X/F Y = hull(X ÷F Y ) = ]−∞, +∞[ ⊃ X ÷F Y . A
similar remark holds for the subsequent definitions of interval division.
More importantly, one can wonder whether, from a mathematical point of view, it is correct to ignore
in [1, 1] ÷F [−1, 1] the division by 0, mainly because the correct mathematical result, projective ∞,
cannot be represented as part of the result interval. And if so, should the user/programmer be notified
about this fact? If not, the user/programmer is left unaware of the fact that a function, in this case
division, may not be evaluated in all points of the input intervals.
The next definition of interval division avoids the problem of division by 0 in the following way.

Definition 3 [8]

Let X, Y ∈ Ir be real, non-empty intervals, then we define

÷R : I2r −→ 2R

(X, Y ) −→ X ÷R Y = {z ∈ R | ∃x ∈ X, y ∈ Y, z · y = x} (2.5a)

and the corresponding interval division

/R : I2r −→ Ir

(X, Y ) −→ X/RY = hullIr
(X ÷R Y ) (2.5b)

It was shown in [3] that the following relation holds between functional division and the interval
division (2.5), sometimes referred to as relational division.

Lemma 2.1: [3]

Let X, Y ∈ Ir be real intervals then X ÷F Y ⊆ X ÷R Y . Furthermore,

X ÷R Y =

{
X ÷F Y 0 6∈ X ∩ Y

]−∞, +∞[ else

and
X/F Y ⊆ X/RY

While the relational division has been implemented in some libraries for interval arithmetic, we shall
not discuss it further in this paper because, unlike Definition 2 and Definition 5, it does not easily
generalize to other interval functions for which the input arguments contain points outside the domain
of the underlying point function.
The last definition for interval division we recall here is introduced in [12] and we shall refer to it as
the containment set division. We therefore first recall the notion of containment set.
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Definition 4 [12]

Let f be a function of n variables and let x = (x1, . . . , xn). The containment set of the function

f : R
n

A → RA with domain Df evaluated at the point x is denoted by cset(f, {x}) and is defined as
follows:

cset(f, {x}) = {z ∈ RA | ∃(xk)k∈N ⊆ Df , lim
k→∞

xk = x, z is accumulation point of (f(xk))}

We remark that when x ∈ Df and f is continuous in {x}, cset(f, {x}) = {f(x)}, while when x 6∈ Df ,

where Df denotes the closure of the domain Df , cset(f, {x}) = ∅. When x ∈ Df \Df , no such general
statement can be made about cset(f, {x}). For example, when f equals division we find

cset(/, {(x, 0)}) = {−∞, +∞} x 6= 0 ∈ R

cset(/, {(0, 0)}) = [−∞, +∞] = RA

Based on the concept of containment set, we have the following definition for interval division.

Definition 5 [12]

Let X, Y ∈ Ir be real, non-empty intervals, then we define

÷C : I2r −→ 2RA

(X, Y ) −→ X ÷C Y = cset(/, (X, Y )) = {z ∈ RA | ∃x ∈ X, y ∈ Y, z ∈ cset(/, {(x, y)})}
(2.7a)

and the corresponding containment set interval division

/C : I2r −→ Ie

(X, Y ) −→ X/CY = hullIe
(X ÷C Y ) (2.7b)

According to Definition 5 we have [1, 1]÷C [−1, 1] = [−∞,−1]∪ [1, +∞], while [0, 2]÷C [0, 1] = RA ⊃
[0, 2] ÷R [0, 1] = ]−∞, +∞[ ⊃ [0, 2] ÷F [0, 1] = [0, +∞[. In general, we have the following relation
between containment set division and relational division.

Lemma 2.2:

Let X, Y ∈ Ir be real intervals then

X ÷R Y = (X ÷C Y ) ∩ R ≡ cset(/, (X, Y )) ∩ R

and
X/RY ⊆ (X/CY ) ∩ R

The short proof is given in Appendix A.

We shall now indicate how functional and containment set division can be recovered as special cases
of a more general definition. To this end, we introduce the notion of value set or vset.

Definition 6

Let f be a rational function with real coefficients of n variables and let x = (x1, . . . , xn). The value
set of the function f : Rn → RP with domain Df evaluated at the point x is denoted by vset(f, {x})
and is defined as follows:

vset(f, {x}) =

{
{f(x)} f(x) ∈ RP

{NaN} x 6∈ Df
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For any subset X ⊆ Rn, we define

vset(f,X) = ∪
x∈X

vset(f, {x})

The value set of the function f at x is nothing but the range in RP of the function f over the set
{x}, except when f is not defined at x. In that case, the value set contains the single value NaN for
Not-a-Number while the range is the empty set. It turns out that this distinction is crucial for our
purposes.

But first, to recover the different definitions of interval division, we look at

vset(/, (X, Y )) ∩ B B = R or RA X, Y ∈ Ir (2.8)

where it is assumed that {∞} ∩ RA = {∞} ∩ {−∞, +∞} = {−∞, +∞}. Let us start with a first
simple example, the division [1, 2]÷ [0, 0]. According to (2.8), we find for

B = R: vset(/, ([1, 2], [0, 0])) ∩ B = {∞} ∩ R = ∅ = [1, 2]÷F [0, 0]
B = RA:

vset(/, ([1, 2], [0, 0])) ∩ B = {∞} ∩ RA

= {−∞, +∞} = cset(/, ([1, 2], [0, 0]))

Before jumping to conclusions, we also consider the example [0, 2]÷ [0, 1]. According to (2.8), we find
for

B = R

vset(/, ([0, 2], [0, 1])) ∩ B = ( [0, +∞[ ∪ {∞} ∪ {0

0
}) ∩ R

= [0, +∞[= [0, 2]÷F [0, 1]

B = RA

vset(/, ([0, 2], [0, 1])) ∩ B = ( [0, +∞[ ∪ {∞} ∪ {0

0
}) ∩ RA

= [0, +∞[ ∪ {−∞, +∞} ⊂ cset(/, ([0, 2], [0, 1]))

In general, functional and containment set interval division can be recovered from the value set for
division in the following way. While this result is certainly not surprising, it will allow us to proceed
with our own, vset-division of intervals in a natural way.

Theorem 2.1:

Let X, Y ∈ Ir be real, non-empty intervals, then

X ÷F Y = vset(/, (X, Y )) ∩ R (2.9a)

X ÷C Y ≡ cset(/, (X, Y )) ⊇ vset(/, (X, Y )) ∩ RA (2.9b)

The proof is given in Appendix A.

From Theorem 2.1 it is clear that, as expected, all real results of division are included in the result
set, irrespective of the definition of interval division. When the mathematical result is not in R or
is undefined, it is ignored in functional division. Another way to look at Definition 5, is to observe
that when the mathematical result of division is projective infinity, this result is projected on the
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extended affine real line, while in cases where the result is undefined, the result is RA. However, this
interpretation of containment set is true only for division, not in general.

In fact, as long as intervals are defined as closed, connected subsets of R or RA and hence are uniquely
characterized by exactly two (extended) reals, Definition 2 and Definition 5 are essentially the best we
can do to deal with input arguments that contain points outside the domain of division. To introduce
vset-interval arithmetic, we need an additional third parameter. This parameter comes from the
unique partitioning of the value set in a subset of R and a subset containing “special” results. For
rational functions with real coefficients, special means either infinity or undefined. We shall see in the
next section that for arbitrary functions, the notion of special result is more general. Reconsidering
the same examples as before, we find

vset(/, ([1, 2], [0, 0])) = {∞} = ∅ ∪ {∞}

vset(/, ([0, 2], [0, 1])) = ( [0, +∞[ ∪ {∞} ∪ {0

0
})

= [0, +∞[ ∪ {∞, NaN}
vset(/, ([1, 2], [1, 1])) = [1, 2] ∪ ∅

In general, the value set of any rational function evaluated over X = (X1, X2) ⊂ R2 consists on one
hand of a subset of R and on the other hand of non-real results. For a rational function, the non-real
results are a subset of the set

S = {∞, NaN}
of special values. Since #2S = 4, all we need to represent any non-real result of division is an additional
two bits.

Definition 7

Let Ir be the set of real intervals and let S denote the set of special values. We define the set Is of
vset-intervals as

Is = {X ∪ s | X ∈ Ir, s ∈ 2S} ⊂ 2R∪S (2.10)

For any I = X ∪ s ∈ Is we let

Real(I) = X ∈ Ir

Special(I) = s ∈ 2S

and refer to these as the real and special part of the vset-interval respectively.

Definition 8

Let X, Y ∈ Ir be real, non-empty intervals, then we define

÷V : I2r −→ 2R∪{∞,NaN}

(X, Y ) −→ X ÷V Y = vset(/, (X, Y ))

and the corresponding vset-interval division by

/V : I2r −→ Is

(X, Y ) −→ X/V Y = hullIr
((X ÷V Y ) ∩ R) ∪ (X ÷V Y ) ∩ S

We shall refer to /V as value set division or vset-division for short. It follows from Definition 8 and
Theorem 2.1 that

X/V Y = X/F Y ∪ Special(X/V Y )



8

In other words, Real(X/V Y ) is precisely the result returned by functional division. Hence it follows
from Lemma 2.1 and Lemma 2.2 that Real(X/V Y ) is at least as sharp as the result returned by
relational and containment set division.
A number of issues arise naturally with respect to the above definition.
First, what is the use of keeping track of non-real results? We shall answer thise question in a
more general context in the next section and indicate that a generalization of vset-interval division
to arbitrary functions f is important to obtain sharp, and especially correct, interval results (see
Theorem 3.3 and Theorem 3.6 in Section 3).
Second, as we shall see in Section 4, keeping track of real and non-real results separately becomes
very useful in a floating-point context because it makes it possible to distinguish between overflow
and a true infinity result without raising exceptions. Let ~ denote the interval-rounded operation
corresponding to ∗, then

2� [1/2, MaxFloat] = [1, +∞[

Here +∞ is the floating-point representation of a value too large to be represented, while in

1�V [0, 1] = [1, +∞[ ∪ {∞}

true mathematical infinity is always an element of the special part of the result and can hence not be
confused with overflow.
Third, examples are given in [8, 12], to indicate that the sharpness of functional division is a problem
for the application of the interval Newton method. That this is not a fundamental problem, is shown
in [3] where the interval Newton method is reformulated to accomodate this remark.

Theorem 2.2: [3]

Let f be a continously differentiable function in I ∈ Ir, let x ∈ I and define

Nx := x− f(x)/f ′(I) ∈ I (2.11)

If 0 6∈ {f(x)} ∩ f ′(I), every zero z of f in I satisfies z ∈ Nx ∩ I .

This formulation of Newton’s method differs from the classical formulation in that the condition
0 6∈ {f(x)}∩f ′(I) has been added. With this additional condition, the theorem holds for all definitions
of interval division given here. Without it, the theorem only holds for relational and containment
set division. Observe, however, that when 0 ∈ {f(x)} ∩ f ′(I), then Nx = ]−∞, +∞[ according to
relational division and Nx = [−∞, +∞] according to containment set division. In that case the
statement z ∈ Nx ∩ I = I is trivially satisfied and there is no contraction.
The additional condition in Theorem 2.2 doesn’t make the theorem less general or less applicable. In
an algorithmic implementation of Newton’s method, whenever Nx ∩ I = I , the interval I is bisected.
In case the division operator / in (2.11) is relational or containment set interval division, the condition
0 ∈ {f(x)}∩f ′(I) automatically implies Nx∩I = I . If we use either functional or value set division to
implement Newton’s method, this is not the case and the condition to start bisection should explicitly
include 0 ∈ {f(x)} ∩ f ′(I).

3 Value sets and vset-interval arithmetic.

In the previous section we have seen that the concepts of containment set and value set extend the
notion of real range of a function, in order to deal with, rather than ignore, points that are not in the
domain of the function. Corresponding to the notion of range, containment and value set, there exist
three interval division operations: functional division, based purely on the (real) range of the division
operator, containment set division based on the notion of containment set and vset-division based on
value sets.
While Definition 4 of containment set is given for arbitrary functions f , value sets are introduced in
Definition 6 for rational functions only. In this section we extend the notion of value set for other
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than rational functions. so that for any function f from R
n

P to C, we can define its extension from In
s

to Is.

Before giving the definition of value set for arbitrary functions f , consider the following example. The
range of the function

√
over the interval [−1, 1] is given by R√ = [0, 1]∪ i[0, 1]. Now, remember that

in a typed programming environment, there is no way to automatically switch from real to complex
mode and hence we cannot enclose the result R√ . The functional and containment set approach

ignore the complex part and return R′√ = [0, 1] as result, effectively loosing the essential property

of containment. In our value set approach, we do not want to loose mathematical containment, and
therefore return as result R′′√ = [0, 1] ∪ {IaC}. The abbreviation IaC stands for Is-a-Complex and is

chosen in analogy with NaN for Not-a-Number. The semantics of {IaC} is that it represents a set of
values V where V ⊆ C. Here the subset {IaC} of the result R′′√ encloses all complex non-real results of
√

[−1, 1]. While in this example it is also true that the set of values V represented by {IaC} satisfies
V ⊆ C \ R, this is not the case in general, as will become clear from Definition 11. We formalize the
semantics of the special value IaC in terms of sets by introducing a semantic function S.

Definition 9

Let S = {∞, IaC, NaN} be the set of special values. For any X ⊆ R∪S, we define the semantics S(X)
of X recursively as follows :

∀x ∈ R ∪ {∞, NaN} : S({x}) = {x}
S({IaC}) = C

∀X ⊆ R ∪ S : S(X) =
⋃

x∈X

S({x})

Having introduced the special value IaC, we are now ready to define the value set of an arbitrary
single-valued function.

Definition 10

Let f be a function of n variables and let x = (x1, . . . , xn). The value set of the function f : C
n → C

with domain Df evaluated at the point x is denoted by vset(f, {x}) and is defined as follows:

vset(f, {x}) =






{f(x)} f(x) ∈ RP

{NaN} x 6∈ Df

{IaC} f(x) ∈ C \ R

Since value sets (or, more precisely, their interval hull) propagate throughout the computation, we
also need to define the value set of {x} = {(x1, . . . , xn)} when at least one of the arguments xi is
NaN or IaC. While the definition of the former is obvious, this is not the case for the latter. The
propagation of special values can be understood in terms of set arithmetic. Based on Definition 9, we
could define

vset(f, {IaC}) =
⋃

x∈S({IaC})
vset(f, {x}) =

⋃

x∈C

vset(f, {x})

There is a problem with this definition, however, in that it can blur explicit real-valued results, since
in many cases R ⊂ ∪x∈Cvset(f, {x}). Hence this approach needs to be refined. Intuitively, we return
{IaC}2 whenever there exists at least one z ∈ Cn such that f(z) ∈ C \ R. On the other hand, if for
all z ∈ Cn, f(z) ∈ RP ∪ {NaN}, it is possible to better quantify the (real-valued) results.

2As will become clear from Definition 11, we return the union of {IaC} and other special values in case there also exists
at least one z ∈ Cn such that f(z) equals ∞ or such that z 6∈ Df .
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Definition 11

Let Df be the domain of a function f : C → C. Then we define

vset(f, {NaN}) = {NaN}

and

vset(f, {IaC}) =





∪
z∈S({IaC})

vset(f, {z}) ∀z ∈ S({IaC}) : f(z) 6∈ C \ R

{IaC} ∪ ∪
z∈S({IaC}):z 6∈Df

z∈S({IaC}):f(z)=∞

vset(f, {z}) ∃z ∈ S({IaC}) : f(z) ∈ C \ R

This definition is generalized in a straightforward way to functions of n variables. Based on Def-
inition 10 and Definition 11, we can now, as before, compute the value set of f for any subset
X ⊆ (R ∪ {∞, NaN, IaC})n as follows:

vset(f,X) = ∪
x∈X

vset(f, {x})

and hence are ready to introduce vset-interval arithmetic.
Before doing so, we illustrate the above definitions with some examples.
Let f be the modulus function. Then vset(| · |, {IaC}) = [0, +∞[. Similarly, if f(x) = x · 0, then
vset(f, {IaC}) = 0. On the other hand, if f(x) = 1/x and x = IaC, there exists z ∈ C such that 1/z ∈
C \R and therefore vset(1/x, {IaC}) = {IaC}∪ {∞}3. In this case the set R \ {0} ⊂ ∪x∈Cvset(f, {x})
is not explicitly returned but contained in {IaC}. If this were not the case, all explicit real-valued
results in expressions such as

vset(1/x, [1, 2] ∪ {IaC}) = vset(1/x, [1, 2]) ∪ vset(1/x, {IaC})
= [1/2, 1] ∪ {IaC} ∪ {∞}

would be blurred. From these examples it should be clear that, unlike the value NaN, the value
IaC, once generated, does not propagate infinitely through the computations but carries valuable
information [4].
Based on the concept of value set, we are now ready to introduce vset-interval arithmetic, in the
same way as interval arithmetic is based on the concept of range of the function, and the exception-
free arithmetic in [12] is based on the concept of containment set. The advantage of basing interval
arithmetic on the concept of value set rather than on the concept of range of a function, is that we
are able to evaluate a function over an interval which contains points that are not in the domain of
the real-valued function, and we do so without losing the containment property of interval arithmetic.

Definition 12

Let f be a function of n variables, let S be the set of special values

S = {∞, NaN, IaC} #2S = 8

and let Is be the set of vset-intervals defined by (2.10). Then the vset-extension of f , which we denote
by fV , is given by

fV : In
s −→ Is

I −→ fV (I) = Real(fV (I)) ∪ Special(fV (I))

3In the actual implementation, we support the special value {IaC} as well as the special value {IaC0} ≡ {IaC} \ {0}.
The distinction between {IaC} and {IaC0} is especially relevant for division since vset(1/x, {IaC0}) = {IaC0}.
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where

Real(fV (I)) = hullIr
(vset(f, I) \ S)

Special(fV (I)) = vset(f, I) ∩ S

Note that to determine the real part of the result fV (I), we now compute vset(f, I) \ S rather than
vset(f, I)∩R in Definition 8. Whenever IaC 6∈ vset(f, I) both these expressions are equivalent. When
IaC ∈ vset(f, I), it is not possible to quantify {IaC} ∩ R without overestimation, since all we know is
that {IaC} represents a set of values V where V ⊆ C and V ∩ (C \ R) 6= ∅.
We further remark that in general fV (I) ⊇ vset(f, I), where the latter is a subset of R ∪ S, while
fV (I) is a vset-interval. To represent the special part of fV (I), three rather than two bits are now
needed, in addition to the two real numbers to represent the real part of the vset-interval. This is
a small overhead in representation and in computation, compared to traditional and containment
set interval arithmetic, but it guarantees containment and sharpness in all situations, as the next
theorem indicates. This theorem also generalizes the result for division, given in Theorem 2.1, to
arbitrary functions f .

Theorem 3.3:

Let f : Rn → C be a function of n variables with domain Df , let Df denote the closure of Df and
let S be the semantic function introduced in Definition 9. For x 6∈ Df we set f(x) = NaN. The
vset-extension fV of f is such that for any I = (I1, . . . , In) ∈ In

r

x ∈ I ⇒ f(x) ∈ S(fV (I)) (3.1)

Furthermore, the relationship given in Table 1 between containment set and value set holds. With the
exception of (c) and (f):

cset(f, I) ⊇ vset(f, I) ∩ RA (3.2)

(a) x ∈ Df f(x) ∈ R cset(f, {x}) ⊇ vset(f, {x}) = {f(x)}
(b) f(x) ∈ C \ R cset(f, {x}) ⊆ RA, vset(f, {x}) = {IaC}
(c) f(x) = ∞ cset(f, {x}) ⊆ RA, vset(f, {x}) = {f(x)}
(d) f continuous in x f(x) ∈ R cset(f, {x}) = vset(f, {x}) = {f(x)}
(e) f continuous in x f(x) ∈ C \ R cset(f, {x}) = ∅, vset(f, {x}) = {IaC}
(f) f continuous in x f(x) = ∞ cset(f, {x}) ⊆ {−∞, +∞}, vset(f, {x}) = {f(x)}
(g) x ∈ Df \Df cset(f, {x}) ⊆ RA, vset(f, {x}) = {NaN}
(h) x 6∈ Df cset(f, {x}) = ∅, vset(f, {x}) = {NaN}

Table 1

The proof is given in Appendix A. The fact that (3.2) doesn’t hold in the cases (c) and (f) is illustrated
in the following examples:
(c) For f(x) = 1/ceil(|x|), we find cset(f, {0}) = {1} while vset(f, {0}) = {∞} = {f(0)}. Note

that in this case the essential property of containment is violated by the cset approach, since
cset(f, {0}) ∩ ({f(0)}) ∩ RA) = ∅!

(f) Let f(x) = 1/x2. Then cset(f, {0}) = {+∞}, while vset(1/x2, {0}) = {∞}. Here cset(f, {0}) ⊂
vset(f, {0}) ∩ RA.

The next examples illustrate the cases (a) and (g) in Table 1:
(a) Consider the function f(x) = floor(x). Then cset(f, {1}) = {0, 1} ⊃ vset(f, {1}) = {1}.
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(g) For f(x) = (x2 − 4)/(x + 2) we find cset(f, {−2}) = {−4} and vset(f, {−2}) = {NaN}.

It follows from Table 1 that, whenever f is evaluated over a subset X ⊂ Rn such that f(X)∩C\R 6= ∅,
containment is only achieved by the value set approach. An example of this situation was given in
Section 1. Another example where lack of containment leads to erroneous conclusions, occurs in the
application of Brouwer’s fixpoint theorem [6]. We first recall this important theorem.

Theorem 3.4: [11, p. 4]

Let X be a nonempty, convex and compact subset of Cn. Let f : X → Cn be a continuous function

and f̃ : 2X → 2C
n

be its set extension with f(x) ∈ f̃(A) for all x ∈ A and A ⊆ X. If

f̃(X) ⊆ X

then the equation f(x) = x has at least one solution in X.

Now consider the function

f(x) =
√

x− 1

which has no real fixpoint and the iteration

Xk+1 = f̃(Xk) =
√

Xk − 1 k = 0, 1, . . .

For X0 = [−4, 1] we find, when we compute f̃ according to the concepts of range and of containment
set, that

X1 =
√

[−4, 1]− 1 = [0, 1]− 1 = [−1, 0] ⊂ X0

and hence f̃(X0) ⊂ X0 while f has no fixpoint in X0! Computing f̃ according to vset-interval
arithmetic, we find

X1 =
√

[−4, 1]− 1 = [0, 1] ∪ {IaC} − 1 = [−1, 0] ∪ {IaC} 6⊂ X0

and no incorrect conclusions are possible. It is true in general that, unlike the other approaches, the
vset-interval approach can not lead to erroneous conclusions in the application of Brouwer’s fixpoint
theorem. Like the other approaches, however, it can suffer from overestimation of the set extension

f̃ of f . In such cases, no (and hence no erroneous) conclusions can be drawn about the existence of a
fixpoint, as the following example illustrates. Consider the function

f(x) =
Log2(x)

π2

which has the fixpoint x = −1 and the iteration

Xk+1 =
Log2(Xk)

π2
k = 0, 1, . . .

For X0 = [−1,−1], we find when we compute an enclosure for f̃ in vset-interval arithmetic, that

X1 = ∅ ∪ IaC 6⊆ X0

Due to overestimation of f̃(X0), we cannot infer that the equation f(x) = x has a fixpoint in X0.

We conclude this section with two important results. The first is the inclusion isotonicity of vset-
interval arithmetic.
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Theorem 3.5: (inclusion isotonicity)

Let X = X1 × . . .×Xn and Y = Y1 × . . .× Yn both be subsets of (R ∪ S)n and let f : C
n → C. The

following holds :
X ⊆ Y ⇒ fV (X) ⊆ fV (Y)

This result follows from Definition 12 of vset-extension.
Second, we state the inclusion property of vset-interval arithmetic. This is related to the effect of
breaking up an interval expression into component subexpressions, and evaluating the vset-extension
of each subexpression.

Theorem 3.6: (inclusion property)

Let g be a function from C
n

to C
m

and let f be a function from C
m

to C. For any X ⊆ C
m

, we set

f̃(X) = {f(x) | x ∈ X}. Then, for any I ∈ In
s , the following holds :

f̃ ◦ g(S(I)) ⊆ S(fV (gV (I))) (3.3)

where S is the semantic function given in Definition 9.

This result, which is proved in Appendix A, is noteworthy in the following sense. When the functions
f and g are real-valued, (3.3) trivially holds if I ⊆ Dg and g(I) ⊆ Df . In that case, the vset-extension
is nothing but the interval hull of the range of the function. However, the importance of this theorem
is that the result continues to hold, also when the input arguments contain points outside the domain
of the underlying point function, considered as a function from RP to RP . Consider f(x) = x2 and
g(x) =

√
x, then (f ◦ g)(x) = x. For I = [−1,−1] we find

f̃ ◦ g([−1,−1]) = [−1,−1] ⊆ S(fV (gV ([−1,−1])))

= S(fV (∅ ∪ {IaC})) = S(∅ ∪ {IaC}) = C

In this example, the inclusion property doesn’t hold anymore if in (3.3) we replace the vset-extension
of f and g by the containment set of f and g. Indeed,

f̃ ◦ g([−1,−1]) = [−1,−1] 6⊆ cset(f, cset(g, [−1,−1])) = cset(f, ∅) = ∅

since [−1,−1] is not in the closure of the domain of g, considered as a function from RP to RP .
The above theorem testifies to the purpose and achievement of the value set approach: it carries
sufficient information to be mathematically reliable in all situations where the input arguments contain
points outside the domain of the underlying function.

4 Floating-point implementation of vset-interval arithmetic.

The previous section deals with real vset-interval arithmetic. That is, for each I ∈ Is, the endpoints
of Real(I) are real. Let F denote the set of floating-point numbers. We obtain floating-point vset-
intervals if in

{X ∪ s | X ∈ Ir, s ∈ 2S} (4.1)

we replace Ir by

{[a, b] | a, b ∈ F} ∪ {]−∞, b] | b ∈ F} ∪ {[a, +∞[ | a ∈ F} ∪ {]−∞, +∞[} (4.2)

In other words, a floating-point vset-interval I is represented by two floating-point numbers inf(I) and
sup(I) which determine Real(I) and a three-bit structure which represents Special(I). The results
in the previous sections continue to hold for floating-point vset-intervals if we add outward interval
rounding to each operation. However, if in (4.1) we replace Ir by a set IF which is even more expressive
than (4.2), we can obtain sharper floating-point vset-interval results. In the definition of the set IF

we shall take advantage of the fact that any floating-point implementation which complies with the
IEEE 754 standard [1] has two representations for zero, in casu +0 and −0.
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Definition 13

Let F denote the set of IEEE floating-point representations. Let f1, f2 denote two finite, non-zero
floating-point numbers and let f denote any floating-point representation different from NaN. We
define the set IF of floating-point intervals by

IF = {〈x1, x2〉 | x1, x2 ∈ F}

where the semantics of 〈x1, x2〉 is given by

Syntax Semantics
〈f1, f2〉 ≡ [f1, f2]
〈f1, +∞〉 ≡ [f1, +∞[
〈−∞, f2〉 ≡ ]−∞, f2]
〈−∞, +∞〉 ≡ ]−∞, +∞[
〈f1, +0〉 ≡ [f1, 0]
〈−0, f2〉 ≡ [0, f2]
〈−0, +0〉 ≡ [0, 0]
〈f1,−0〉 ≡ [f1, 0[
〈+0, f2〉 ≡ ]0, f2]
〈−0, +∞〉 ≡ [0, +∞[
〈+0, +∞〉 ≡ ]0, +∞[
〈−∞, +0〉 ≡ ]−∞, 0]
〈−∞,−0〉 ≡ ]−∞, 0[
〈NaN, NaN〉 ≡ ∅
〈NaN, f〉 undefined
〈f, NaN〉 undefined

The interpretation of the angle brackets in Definition 13 as [ or ] depends on the value of the left/right
endpoint and can be understood intuitively. Indeed, in a floating-point context, the left endpoint of
Real(I) is always the result of a round down operation, and the right endpoint always the result of
a round up operation. Since +0 as left endpoint can only occur as the result of rounding down a
non-zero positive number smaller than the smallest unnormalized number, it is natural to interpret
〈+0, f〉 as ]0, f ]. If the left endpoint is −0, the interval result contains the mathematical zero and
〈−0, f〉 is to be interpreted as [0, f ].
Based on the sets IF and S = {∞, IaC0, IaC, NaN} for the real and special part respectively, the set
Is(F) of floating-point vset-intervals is now given by

Is(F) = {X ∪ s | X ∈ IF, s ∈ 2S} S = {∞, IaC0, IaC, NaN} (4.3)

Note that, as indicated in the previous section, our implementation of vset-interval arithmetic sup-
ports, besides the special value IaC, also the special value IaC0 which can be interpreted as ‘a set of
nonzero complex numbers’. The addition of the special value IaC0 implies that we need to refine the
definition of value set and the propagation of special values. This can be done in a straightforward
way and is detailed in Appendix B.
The advantages of using IF to define floating-point vset-intervals rahter than (4.2), are plentiful. First,
we observe that in any floating-point set F, the representations ±∞ have two interpretations: ±∞ can
represent both overflow and an infinite result. We unravel this two-fold interpretation in floating-point
vset-intervals: true infinite results are represented by the special value ∞, while overflow is represented
by an infinite endpoint in the real part of the vset-interval. Such a distinction has advantages. We
find for example that sin([0, +∞[) = [−1, +1], while sin([−π, π] ∪ {∞}) = [−1, +1]∪ {NaN} since sin
of any finite number lies in the interval [−1, +1] while sin(∞) is mathematically undefined. Moreover,
it guarantees exception-free interval arithmetic, since there is no need for overflow, underflow, invalid
and zero-divide flags.
Similarly, in floating-point arithmetic, the representations ±0 have two interpretations: they can
represent both zero as well as underflow (a very small, non-zero result). It is clear that the situation
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at 0 and the situation at ∞ are dual and therefore we need to be able to represent intervals which
include/exclude 0 as endpoint. That is precisely what we achieve with Definition 13. As an example,
we find 1/[1, +∞[=]0, 1] ≡ 〈+0, 1〉, while 1/([1, +∞[∪{∞}) = [0, 1] ≡ 〈−0, 1〉.
This example shows the benefits of making a distinction between very small nonzero numbers, and
zero itself. If the result of an operation is different from zero, we can represent this information to get
a sharp result. If the result contains zero, we don’t ignore possibly invalid or infinite results later on
in the computation. Interval systems which don’t provide a representation for half open intervals at
0, cannot make this distinction.
Finally, some excerpts of the tables, detailing the basic arithmetic operations on vset-intervals, are
given. We assume that x1, x2 ∈ R+ and x2 6= 0.

+ ]0, x2] [0, x2] [x1, +∞[ [−x1,+∞[ ∪ {∞}

]0, x2] ]0, 2x2] ]0, 2x2] [x1, +∞[ [−x1,+∞[ ∪ {∞}

[0, x2] ]0, 2x2] [0, 2x2] [x1, +∞[ [−x1,+∞[ ∪ {∞}

[x1,+∞[ [x1, +∞[ [x1,+∞[ [2x1,+∞[ [2x1,+∞[ ∪ {∞}

[−x1,+∞[ ∪ {∞} [−x1,+∞[ ∪ {∞} [−x1, +∞[∪ {∞} [2x1,+∞[ ∪ {∞} [2x1,+∞[ ∪ {∞,NaN}

× ]0, x2] [0, x2] [x1,+∞[ [−x1, +∞[∪ {∞}

]0, x2]
]
0, x2

2

] [
0, x2

2

]
]0, +∞[ [−x1x2, +∞[∪ {∞}

[0, x2]
[
0, x2

2

] [
0, x2

2

]
[0, +∞[ [−x1x2, +∞[∪ {∞,NaN}

[x1,+∞[ ]0, +∞[ [0, +∞[
[
x2

1
,+∞

[
]−∞,+∞]∪ {∞}

[−x1, +∞[∪ {∞} [−x1x2,+∞[ ∪ {∞} [−x1x2,+∞[ ∪ {∞, NaN} ]−∞,+∞] ∪ {∞} ]−∞,+∞] ∪ {∞,NaN}

/ ]0, x2] [0, x2] [x1,+∞[ [−x1, +∞[ ∪ {∞}

]0, x2] ]0, +∞[ ]0, +∞[∪ {∞} ]0, x1/x2] ]−∞,+∞] ∪ {∞}

[0, x2] [0, +∞[ [0,+∞[ ∪ {∞,NaN} [0, x1/x2[ ]−∞,+∞] ∪ {∞,NaN}

[x1, +∞[ [x1/x2,+∞[ [x1/x2,+∞[ ∪ {∞} ]0, +∞[ ]−∞,+∞] ∪ {∞}

[−x1,+∞[ ∪ {∞} ]−∞,+∞] ∪ {∞} ]−∞,+∞] ∪ {∞,NaN} [−1,+∞[ ∪ {∞} ]−∞,+∞] ∪ {∞,NaN}

Floating-point vset-interval arithmetic as described here is implemented as part of the larger Arithmos
environment [2]. The interested reader can find reports on the project’s progress and download
software demonstrations at [2].
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Appendix A. Proofs of the lemmas and theorems

A.1. Notation. In order to prove the theorems in the paper, we introduce some
additional notation listed in Table A.1.

X0 X \ {0}
(an)n the sequence (a1, a2, . . .)
(akn

)n the subsequence (ak1
, ak2

, . . .) of (an)n

(an)n → a (an)n converges to a
(an)n a a a is an accumulation point of (an)n

Table A.1 Notation

A.2. Some additional lemmas. We need several additional lemmas to prove the
theorems in the paper.

Lemma A.1. If X ⊆ R, then hullIr
(X) = hullIe

(X) ∩ R

Proof. By definition. �

Lemma A.2. If X, Y1, Y2, Y ⊆ R and Y1 ∪ Y2 = Y , then

(X ÷R Y1) ∪ (X ÷R Y2) = X ÷R Y

(X ÷C Y1) ∪ (X ÷C Y2) = X ÷C Y

(X ÷V Y1) ∪ (X ÷V Y2) = X ÷V Y

Proof. Trivial. �

Corollary A.3. If X, Y1, Y2, Y ∈ Ir and Y1 ∪ Y2 = Y , then

(X/RY1) ∪ (X/RY2) ⊆ X/RY

(X/CY1) ∪ (X/CY2) ⊆ X/CY

Lemma A.4. If X ⊆ R and Y ⊆ R0, then

(X ÷F Y ) = (X ÷R Y ) = (X ÷C Y ) ⊆ R

Proof. It follows easily from

∀x, y, z ∈ R, y 6= 0 : z =
x

y
⇐⇒ x = yz

that (X ÷F Y ) = (X ÷R Y ) ⊆ R if 0 /∈ Y . We next prove that X ÷C Y = X ÷R Y .
Suppose that z ∈ X ÷R Y . Then there exist x ∈ X and y ∈ Y such that x = yz.
Because y 6= 0, it follows that z = x

y . Now the constant sequence ((x, y))n converges

to (x, y), and the sequence
(

x
y

)

n
converges to x

y = z. So z ∈ cset(/, (X, Y )) ≡

X ÷C Y .
If on the other hand z ∈ X÷C Y , then there exists a real sequence ((xn, yn))n such

that ((xn, yn))n → (x, y) ∈ X × Y and
(

xn

yn

)

n
a z. We can find a subsequence

(
xkn

ykn

)

n
such that

(
xkn

ykn

)

n
→ z and then we still have that ((xkn

, ykn
))n → (x, y).

Since y 6= 0, the division is continuous in (x, y) and thus x
y = z, or equivalent

x = yz. We know that x ∈ X and y ∈ Y , so z ∈ X ÷R Y . �

1
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Lemma A.5. If ∅ 6= X ⊆ R, the following holds:

X ÷R {0} =

{
∅ if 0 /∈ X

R if 0 ∈ X

X ÷C {0} =

{
{−∞, +∞} if 0 /∈ X

RA if 0 ∈ X

X ÷V {0} ⊆ {∞, NaN}

Proof. By definition of relational, containment and value set division. �

A.3. Proof of lemma 2.2.

Lemma. Let X, Y ∈ Ir, then

X ÷R Y = (X ÷C Y ) ∩ R (1)

and

X/RY ⊆ (X/CY ) ∩ R (2)

Proof. If 0 6∈ Y , (1) immediately follows from lemma A.4 while if 0 ∈ Y , it is
implied by lemmas A.5 and A.2. We furhter have that

X/RY = hullIr
(X ÷R Y )

= hullIe
(X ÷R Y ) ∩ R by lemma A.1

⊆ hullIe
(X ÷C Y ) ∩ R by (1)

= (X/CY ) ∩ R

which completes the proof. �

A.4. Proof of theorem 2.1.

Theorem. Let X, Y ∈ Ir be real, non-empty intervals, then

X ÷F Y = (X ÷V Y ) ∩ R ≡ vset(/, (X, Y )) ∩ R (3)

X ÷C Y ⊇ (X ÷V Y ) ∩ RA ≡ vset(/, (X, Y )) ∩ RA (4)

Proof. The first statement of the theorem follows directly from the definition, since

X ÷F Y =

{
x

y
∈ R | x ∈ X, y ∈ Y

}

X ÷V Y =

{
x

y
∈ RP | x ∈ X, y ∈ Y

}
∪ {NaN | (0, 0) ∈ X × Y }

We know from lemma A.4 that X÷C Y0 = X÷V Y0 ⊆ R which proves (4) if 0 6∈ Y .
If 0 ∈ Y , then according to lemma A.5, we have that

(X ÷V {0}) ∩ RA ⊆ {−∞, +∞} ⊆ X ÷C {0}

which, taking into account lemma A.2, completes the proof of the theorem. �

A.5. Proof of theorem 3.3.

Theorem. Let f : Rn → C be an n-ary function with domain Df and let Df

denote the closure of Df . The following holds :

(a) ∀x ∈ Df : f(x) ∈ R ⇒ cset(f, {x}) ⊇ vset(f, {x})

Proof. We construct the constant sequence (x)n. Because (x)n → x ∈ I

and (f(x))n → f(x), we see that f(x) ∈ cset(f, {x}). �

(b) ∀x ∈ Df : f(x) ∈ C \ R ⇒ cset(f, {x}) ⊆ RA, vset(f, {x}) = {IaC}
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Proof. By definition. �

(c) ∀x ∈ Df : f(x) = ∞⇒ cset(f, {x}) ⊆ RA, vset(f, {x}) = {∞}

Proof. By definition. �

(d) If f is continuous in x ∈ Df and f(x) ∈ R, then cset(f, {x}) = vset(f, {x})

Proof. From the definition of value set, it is clear that vset(f, {x}) =
{f(x)}.

Suppose now that y ∈ cset(f, {x}), then there exists a real sequence
(xn)n, such that (xn)n → x and (f(xn))n a y. We can find a subsequence
(xkn

)n such that (f(xkn
))n → y, and then we still have that (xkn

)n → x.
Since f is continuous in x, it follows that f(x) = y. �

(e) If f is continuous in x ∈ Df and f(x) ∈ C \ R, then

cset(f, {x}) = ∅, vset(f, {x}) = {IaC}

Proof. The fact that vset(f, {x}) = {IaC} follows directly from the defini-
tion. Now assume that y ∈ cset(f, {x}). Since f(x) ∈ C \R, we know that

=(f(x)) 6= 0. Now choose 0 < ε < =(f(x))
2 .

Since f is continuous in x, we can find δ such that

∀z ∈ Df : |z− x| ≤ δ ⇒ |f(z)− f(x)| ≤ ε (5)

Because y ∈ cset(f, {x}), there exists a sequence (xn)n which converges to
x such that (f(xn))n a y. Since (xn)n → x, there exists n0 ∈ N such that

∀n > n0 : |x− xn| ≤ δ (6)

The fact that (f(xn))n a y allows us to find some n1 ∈ N such that n1 > n0

and

|y − f(xn1
)| ≤ ε (7)

Putting z = xn1
in (5), we find

|f(xn1
)− f(x)| ≤ ε (8)

and hence |y − f(x)| ≤ 2ε. This is impossible, since y ∈ R, f(x) ∈ C \
R, and =(f(x)) > 2ε. So our assumption that y ∈ cset(f, {x}) must be
incorrect. �

(f) If f is continuous in x ∈ Df and f(x) = ∞, then cset(f, {x}) ⊆ {−∞, +∞}
and vset(f, x) = {∞}

Proof. By definition vset(f, x) = {∞}. Now suppose there is an element
y ∈ cset(f, {x}). Again we create a sequence (xn)n such that (xn)n → x

and (f(xn))n a y. And again we take a subsequence (f(xkn
))n → y. Since

f is continuous in x, and because (xkn
)n → x, we know that

|y| =

∣∣∣∣ lim
n→+∞

f(xkn
)

∣∣∣∣ = |f(x)| = |∞|

Since cset(f, {x}) is a subset of RA by definition, y should be either +∞
or −∞. �

(g) ∀x ∈ Df \Df : cset(f, {x}) ⊆ RA, vset(f, {x}) = {NaN}

Proof. By definition. �

(h) ∀x /∈ Df : cset(f, {x}) = ∅, vset(f, {x}) = {NaN}

Proof. By definition. �
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From the definition of vset-extension of f and from (a) through (h) it follows that
for any I = (I1, I2 · · · In) ∈ In

r

x ∈ I ⇒ f(x) ∈ S(vset(f, I)) ⊆ S(fV (I))

since S, the semantic function introduced in Definition 9, is such that S({IaC}) = C.
With the exception of (c) and (f), it also follows from the above that

cset(f, I) ⊇ vset(f, I) ∩ RA

This concludes the proof of the theorem.

A.6. Proof of theorem 3.6.

Theorem (inclusion property). Let g be a function from C
n

to C
m

and let f be a

function from C
m

to C. For any X ⊆ (C)m, we set f̃(X) = {f(x) | x ∈ X}. Then,

for any I ∈ In
s , the following holds:

f̃ ◦ g(S(I)) ⊆ S(fV (gV (I)))

where S is the semantic function introduced in Definition 9.

Proof. From Theorem 3.3 we know that for any I ∈ In
r ,

g̃(I) ⊆ S(gV (I)) (9)

According to the definition of value set, we also have that for any X ⊆ (R ∪ S)n

x ∈ S(X) ⇒ g(x) ∈ S(vset(g,X))

and hence we obtain the following generalization of (9):

g̃(S(I)) ⊆ S(gV (I)) I ∈ In
s (10)

It follows that

f̃(g̃(S(I))) ⊆ f̃(S(gV (I)))

Applying (10) again, but now to f̃ , we find

f̃(g̃(S(I))) ⊆ S(fV (gV (I)))

and hence

f̃ ◦ g(S(I)) ⊆ S(fV (gV (I)))

�

Appendix B

In the paper we indicate that introducing, besides IaC, the special value IaC0, turns
out to be essential for sharpness in many instances. In this appendix we refine the
definitions in Section 3 to take into account the special value IaC0. We recall from
Section 3 that {IaC} represents a set of values V where V ⊆ C. Similarly, {IaC0}
represents a set V where V ⊆ C0.

Definition B.1. For any X ⊆ R ∪ S = R ∪ {∞, IaC, IaC0, NaN}, we define the

semantics S(X) of X recursively as follows :

∀x ∈ R ∪ {∞, NaN} : S({x}) = {x}

S({IaC0}) = C0

S({IaC}) = C

∀X ⊆ R ∪ S : S(X) =
⋃

x∈X

S({x})
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Definition B.2. Let f be a function of n variables and let x = (x1, . . . , xn). The

value set of the function f : C
n
→ C with domain Df evaluated at the point x is

denoted by vset(f, {x}) and is defined as follows:

vset(f, {x}) =






{f(x)} f(x) ∈ RP

{NaN} x /∈ Df

{IaC0} f(x) ∈ C0 \ R

Definition B.3. Let Df be the domain of a function f : C → C and let s ∈
{IaC, IaC0}. Then we define

vset(f, {s}) =





⋃
z∈S({s})

vset(f, {z}) ∀z ∈ S({s}) : f(z) /∈ C \ R

{IaC} ∪
⋃

z∈S({s}):f(z)/∈C

vset(f, {z}) ∃z ∈ S({s}) : f(z) ∈ C \ R

and

∃z ∈ S({s}) : f(z) = 0

{IaC0} ∪
⋃

z∈S({s}):f(z)/∈C

vset(f, {z}) otherwise

while, as before,

vset(f, {NaN}) = {NaN}

Clearly, this last definition can be generalized in a straightforward way to functions
of n variables.


